add rag test
This commit is contained in:
parent
703aefbd17
commit
52e6f458be
@ -3,6 +3,8 @@ import datetime
|
||||
import uuid
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
|
||||
from core.rag.cleaner.clean_processor import CleanProcessor
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
@ -16,98 +18,98 @@ from models.dataset import Dataset
|
||||
from models.model import UploadFile
|
||||
|
||||
|
||||
class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
|
||||
def extract(self) -> list[Document]:
|
||||
file_detail = UploadFile(
|
||||
tenant_id='test',
|
||||
storage_type='local',
|
||||
key='test.txt',
|
||||
name='test.txt',
|
||||
size=1024,
|
||||
extension='txt',
|
||||
mime_type='text/plain',
|
||||
created_by='test',
|
||||
created_at=datetime.datetime.utcnow(),
|
||||
used=True,
|
||||
used_by='d48632d7-c972-484a-8ed9-262490919c79',
|
||||
used_at=datetime.datetime.utcnow()
|
||||
)
|
||||
extract_setting = ExtractSetting(
|
||||
datasource_type="upload_file",
|
||||
upload_file=file_detail,
|
||||
document_model='text_model'
|
||||
)
|
||||
@pytest.mark.parametrize('setup_unstructured_mock', [['partition_md', 'chunk_by_title']], indirect=True)
|
||||
def extract() -> list[Document]:
|
||||
file_detail = UploadFile(
|
||||
tenant_id='test',
|
||||
storage_type='local',
|
||||
key='test.txt',
|
||||
name='test.txt',
|
||||
size=1024,
|
||||
extension='txt',
|
||||
mime_type='text/plain',
|
||||
created_by='test',
|
||||
created_at=datetime.datetime.utcnow(),
|
||||
used=True,
|
||||
used_by='d48632d7-c972-484a-8ed9-262490919c79',
|
||||
used_at=datetime.datetime.utcnow()
|
||||
)
|
||||
extract_setting = ExtractSetting(
|
||||
datasource_type="upload_file",
|
||||
upload_file=file_detail,
|
||||
document_model='text_model'
|
||||
)
|
||||
|
||||
text_docs = ExtractProcessor.extract(extract_setting=extract_setting,
|
||||
is_automatic=False)
|
||||
text_docs = ExtractProcessor.extract(extract_setting=extract_setting,
|
||||
is_automatic=True)
|
||||
assert isinstance(text_docs, list)
|
||||
return text_docs
|
||||
|
||||
return text_docs
|
||||
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
|
||||
# Split the text documents into nodes.
|
||||
splitter = self._get_splitter(processing_rule=kwargs.get('process_rule'),
|
||||
embedding_model_instance=kwargs.get('embedding_model_instance'))
|
||||
all_documents = []
|
||||
for document in documents:
|
||||
# document clean
|
||||
document_text = CleanProcessor.clean(document.page_content, kwargs.get('process_rule'))
|
||||
document.page_content = document_text
|
||||
# parse document to nodes
|
||||
document_nodes = splitter.split_documents([document])
|
||||
split_documents = []
|
||||
for document_node in document_nodes:
|
||||
|
||||
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
|
||||
# Split the text documents into nodes.
|
||||
splitter = self._get_splitter(processing_rule=kwargs.get('process_rule'),
|
||||
embedding_model_instance=kwargs.get('embedding_model_instance'))
|
||||
all_documents = []
|
||||
for document in documents:
|
||||
# document clean
|
||||
document_text = CleanProcessor.clean(document.page_content, kwargs.get('process_rule'))
|
||||
document.page_content = document_text
|
||||
# parse document to nodes
|
||||
document_nodes = splitter.split_documents([document])
|
||||
split_documents = []
|
||||
for document_node in document_nodes:
|
||||
if document_node.page_content.strip():
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(document_node.page_content)
|
||||
document_node.metadata['doc_id'] = doc_id
|
||||
document_node.metadata['doc_hash'] = hash
|
||||
# delete Spliter character
|
||||
page_content = document_node.page_content
|
||||
if page_content.startswith(".") or page_content.startswith("。"):
|
||||
page_content = page_content[1:]
|
||||
else:
|
||||
page_content = page_content
|
||||
document_node.page_content = page_content
|
||||
split_documents.append(document_node)
|
||||
all_documents.extend(split_documents)
|
||||
return all_documents
|
||||
|
||||
if document_node.page_content.strip():
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(document_node.page_content)
|
||||
document_node.metadata['doc_id'] = doc_id
|
||||
document_node.metadata['doc_hash'] = hash
|
||||
# delete Spliter character
|
||||
page_content = document_node.page_content
|
||||
if page_content.startswith(".") or page_content.startswith("。"):
|
||||
page_content = page_content[1:]
|
||||
else:
|
||||
page_content = page_content
|
||||
document_node.page_content = page_content
|
||||
split_documents.append(document_node)
|
||||
all_documents.extend(split_documents)
|
||||
return all_documents
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True):
|
||||
if dataset.indexing_technique == 'high_quality':
|
||||
vector = Vector(dataset)
|
||||
vector.create(documents)
|
||||
if with_keywords:
|
||||
keyword = Keyword(dataset)
|
||||
keyword.create(documents)
|
||||
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True):
|
||||
if dataset.indexing_technique == 'high_quality':
|
||||
vector = Vector(dataset)
|
||||
vector.create(documents)
|
||||
if with_keywords:
|
||||
keyword = Keyword(dataset)
|
||||
keyword.create(documents)
|
||||
def clean(self, dataset: Dataset, node_ids: Optional[list[str]], with_keywords: bool = True):
|
||||
if dataset.indexing_technique == 'high_quality':
|
||||
vector = Vector(dataset)
|
||||
if node_ids:
|
||||
vector.delete_by_ids(node_ids)
|
||||
else:
|
||||
vector.delete()
|
||||
if with_keywords:
|
||||
keyword = Keyword(dataset)
|
||||
if node_ids:
|
||||
keyword.delete_by_ids(node_ids)
|
||||
else:
|
||||
keyword.delete()
|
||||
|
||||
def clean(self, dataset: Dataset, node_ids: Optional[list[str]], with_keywords: bool = True):
|
||||
if dataset.indexing_technique == 'high_quality':
|
||||
vector = Vector(dataset)
|
||||
if node_ids:
|
||||
vector.delete_by_ids(node_ids)
|
||||
else:
|
||||
vector.delete()
|
||||
if with_keywords:
|
||||
keyword = Keyword(dataset)
|
||||
if node_ids:
|
||||
keyword.delete_by_ids(node_ids)
|
||||
else:
|
||||
keyword.delete()
|
||||
|
||||
def retrieve(self, retrival_method: str, query: str, dataset: Dataset, top_k: int,
|
||||
score_threshold: float, reranking_model: dict) -> list[Document]:
|
||||
# Set search parameters.
|
||||
results = RetrievalService.retrieve(retrival_method=retrival_method, dataset_id=dataset.id, query=query,
|
||||
top_k=top_k, score_threshold=score_threshold,
|
||||
reranking_model=reranking_model)
|
||||
# Organize results.
|
||||
docs = []
|
||||
for result in results:
|
||||
metadata = result.metadata
|
||||
metadata['score'] = result.score
|
||||
if result.score > score_threshold:
|
||||
doc = Document(page_content=result.page_content, metadata=metadata)
|
||||
docs.append(doc)
|
||||
return docs
|
||||
def retrieve(self, retrival_method: str, query: str, dataset: Dataset, top_k: int,
|
||||
score_threshold: float, reranking_model: dict) -> list[Document]:
|
||||
# Set search parameters.
|
||||
results = RetrievalService.retrieve(retrival_method=retrival_method, dataset_id=dataset.id, query=query,
|
||||
top_k=top_k, score_threshold=score_threshold,
|
||||
reranking_model=reranking_model)
|
||||
# Organize results.
|
||||
docs = []
|
||||
for result in results:
|
||||
metadata = result.metadata
|
||||
metadata['score'] = result.score
|
||||
if result.score > score_threshold:
|
||||
doc = Document(page_content=result.page_content, metadata=metadata)
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user