dataset metadata update

This commit is contained in:
jyong 2025-02-26 19:56:19 +08:00
parent 5f995fac32
commit 67f2c766bc
39 changed files with 1112 additions and 124 deletions

View File

@ -88,9 +88,9 @@ class DatasetDocumentSegmentListApi(Resource):
if args["enabled"].lower() != "all": if args["enabled"].lower() != "all":
if args["enabled"].lower() == "true": if args["enabled"].lower() == "true":
query = query.filter(DocumentSegment.enabled == True) # noqa: E712 query = query.filter(DocumentSegment.enabled == True)
elif args["enabled"].lower() == "false": elif args["enabled"].lower() == "false":
query = query.filter(DocumentSegment.enabled == False) # noqa: E712 query = query.filter(DocumentSegment.enabled == False)
segments = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False) segments = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)

View File

@ -0,0 +1,143 @@
from flask_login import current_user # type: ignore # type: ignore
from flask_restful import Resource, marshal_with, reqparse # type: ignore
from werkzeug.exceptions import NotFound
from controllers.console import api
from controllers.console.wraps import account_initialization_required, enterprise_license_required, setup_required
from fields.dataset_fields import dataset_metadata_fields
from libs.login import login_required
from services.dataset_service import DatasetService
from services.entities.knowledge_entities.knowledge_entities import (
MetadataArgs,
MetadataOperationData,
)
from services.metadata_service import MetadataService
def _validate_name(name):
if not name or len(name) < 1 or len(name) > 40:
raise ValueError("Name must be between 1 to 40 characters.")
return name
def _validate_description_length(description):
if len(description) > 400:
raise ValueError("Description cannot exceed 400 characters.")
return description
class DatasetListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@enterprise_license_required
@marshal_with(dataset_metadata_fields)
def post(self, dataset_id):
parser = reqparse.RequestParser()
parser.add_argument("type", type=str, required=True, nullable=True, location="json")
parser.add_argument("name", type=str, required=True, nullable=True, location="json")
args = parser.parse_args()
metadata_args = MetadataArgs(**args)
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
DatasetService.check_dataset_permission(dataset, current_user)
metadata = MetadataService.create_metadata(dataset_id_str, metadata_args)
return metadata, 201
class DatasetMetadataApi(Resource):
@setup_required
@login_required
@account_initialization_required
@enterprise_license_required
def patch(self, dataset_id, metadata_id):
parser = reqparse.RequestParser()
parser.add_argument("name", type=str, required=True, nullable=True, location="json")
args = parser.parse_args()
dataset_id_str = str(dataset_id)
metadata_id_str = str(metadata_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
DatasetService.check_dataset_permission(dataset, current_user)
metadata = MetadataService.update_metadata_name(dataset_id_str, metadata_id_str, args.get("name"))
return metadata, 200
@setup_required
@login_required
@account_initialization_required
@enterprise_license_required
def delete(self, dataset_id, metadata_id):
dataset_id_str = str(dataset_id)
metadata_id_str = str(metadata_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
DatasetService.check_dataset_permission(dataset, current_user)
MetadataService.delete_metadata(dataset_id_str, metadata_id_str)
return 200
class DatasetMetadataBuiltInFieldApi(Resource):
@setup_required
@login_required
@account_initialization_required
@enterprise_license_required
def get(self):
built_in_fields = MetadataService.get_built_in_fields()
return built_in_fields, 200
class DatasetMetadataBuiltInFieldActionApi(Resource):
@setup_required
@login_required
@account_initialization_required
@enterprise_license_required
def post(self, dataset_id, action):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
DatasetService.check_dataset_permission(dataset, current_user)
if action == "enable":
MetadataService.enable_built_in_field(dataset)
elif action == "disable":
MetadataService.disable_built_in_field(dataset)
return 200
class DocumentMetadataApi(Resource):
@setup_required
@login_required
@account_initialization_required
@enterprise_license_required
def post(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
DatasetService.check_dataset_permission(dataset, current_user)
parser = reqparse.RequestParser()
parser.add_argument("operation_data", type=list, required=True, nullable=True, location="json")
args = parser.parse_args()
metadata_args = MetadataOperationData(**args)
MetadataService.update_documents_metadata(dataset, metadata_args)
return 200
api.add_resource(DatasetListApi, "/datasets/<uuid:dataset_id>/metadata")
api.add_resource(DatasetMetadataApi, "/datasets/<uuid:dataset_id>/metadata/<uuid:metadata_id>")
api.add_resource(DatasetMetadataBuiltInFieldApi, "/datasets/metadata/built-in")
api.add_resource(DatasetMetadataBuiltInFieldActionApi, "/datasets/metadata/built-in/<string:action>")
api.add_resource(DocumentMetadataApi, "/datasets/<uuid:dataset_id>/documents/metadata")

View File

@ -88,16 +88,17 @@ class Jieba(BaseKeyword):
keyword_table = self._get_dataset_keyword_table() keyword_table = self._get_dataset_keyword_table()
k = kwargs.get("top_k", 4) k = kwargs.get("top_k", 4)
document_ids_filter = kwargs.get("document_ids_filter")
sorted_chunk_indices = self._retrieve_ids_by_query(keyword_table or {}, query, k) sorted_chunk_indices = self._retrieve_ids_by_query(keyword_table or {}, query, k)
documents = [] documents = []
for chunk_index in sorted_chunk_indices: for chunk_index in sorted_chunk_indices:
segment = ( segment_query = db.session.query(DocumentSegment).filter(
db.session.query(DocumentSegment) DocumentSegment.dataset_id == self.dataset.id, DocumentSegment.index_node_id == chunk_index
.filter(DocumentSegment.dataset_id == self.dataset.id, DocumentSegment.index_node_id == chunk_index)
.first()
) )
if document_ids_filter:
segment_query = segment_query.filter(DocumentSegment.document_id.in_(document_ids_filter))
segment = segment_query.first()
if segment: if segment:
documents.append( documents.append(

View File

@ -38,6 +38,7 @@ class RetrievalService:
reranking_model: Optional[dict] = None, reranking_model: Optional[dict] = None,
reranking_mode: str = "reranking_model", reranking_mode: str = "reranking_model",
weights: Optional[dict] = None, weights: Optional[dict] = None,
document_ids_filter: Optional[list[str]] = None,
): ):
if not query: if not query:
return [] return []
@ -61,6 +62,7 @@ class RetrievalService:
"top_k": top_k, "top_k": top_k,
"all_documents": all_documents, "all_documents": all_documents,
"exceptions": exceptions, "exceptions": exceptions,
"document_ids_filter": document_ids_filter,
}, },
) )
threads.append(keyword_thread) threads.append(keyword_thread)
@ -79,6 +81,7 @@ class RetrievalService:
"all_documents": all_documents, "all_documents": all_documents,
"retrieval_method": retrieval_method, "retrieval_method": retrieval_method,
"exceptions": exceptions, "exceptions": exceptions,
"document_ids_filter": document_ids_filter,
}, },
) )
threads.append(embedding_thread) threads.append(embedding_thread)
@ -98,6 +101,7 @@ class RetrievalService:
"reranking_model": reranking_model, "reranking_model": reranking_model,
"all_documents": all_documents, "all_documents": all_documents,
"exceptions": exceptions, "exceptions": exceptions,
"document_ids_filter": document_ids_filter,
}, },
) )
threads.append(full_text_index_thread) threads.append(full_text_index_thread)
@ -135,7 +139,14 @@ class RetrievalService:
@classmethod @classmethod
def keyword_search( def keyword_search(
cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list cls,
flask_app: Flask,
dataset_id: str,
query: str,
top_k: int,
all_documents: list,
exceptions: list,
document_ids_filter: Optional[list[str]] = None,
): ):
with flask_app.app_context(): with flask_app.app_context():
try: try:
@ -145,7 +156,9 @@ class RetrievalService:
keyword = Keyword(dataset=dataset) keyword = Keyword(dataset=dataset)
documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k) documents = keyword.search(
cls.escape_query_for_search(query), top_k=top_k, document_ids_filter=document_ids_filter
)
all_documents.extend(documents) all_documents.extend(documents)
except Exception as e: except Exception as e:
exceptions.append(str(e)) exceptions.append(str(e))
@ -162,6 +175,7 @@ class RetrievalService:
all_documents: list, all_documents: list,
retrieval_method: str, retrieval_method: str,
exceptions: list, exceptions: list,
document_ids_filter: Optional[list[str]] = None,
): ):
with flask_app.app_context(): with flask_app.app_context():
try: try:
@ -177,6 +191,7 @@ class RetrievalService:
top_k=top_k, top_k=top_k,
score_threshold=score_threshold, score_threshold=score_threshold,
filter={"group_id": [dataset.id]}, filter={"group_id": [dataset.id]},
document_ids_filter=document_ids_filter,
) )
if documents: if documents:

View File

@ -53,7 +53,7 @@ class AnalyticdbVector(BaseVector):
self.analyticdb_vector.delete_by_metadata_field(key, value) self.analyticdb_vector.delete_by_metadata_field(key, value)
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]: def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
return self.analyticdb_vector.search_by_vector(query_vector) return self.analyticdb_vector.search_by_vector(query_vector, **kwargs)
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]: def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
return self.analyticdb_vector.search_by_full_text(query, **kwargs) return self.analyticdb_vector.search_by_full_text(query, **kwargs)

View File

@ -194,6 +194,11 @@ class AnalyticdbVectorBySql:
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]: def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 4) top_k = kwargs.get("top_k", 4)
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = "WHERE 1=1"
if document_ids_filter:
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause += f"AND metadata_->>'doc_id' IN ({doc_ids})"
score_threshold = float(kwargs.get("score_threshold") or 0.0) score_threshold = float(kwargs.get("score_threshold") or 0.0)
with self._get_cursor() as cur: with self._get_cursor() as cur:
query_vector_str = json.dumps(query_vector) query_vector_str = json.dumps(query_vector)
@ -202,7 +207,7 @@ class AnalyticdbVectorBySql:
f"SELECT t.id AS id, t.vector AS vector, (1.0 - t.score) AS score, " f"SELECT t.id AS id, t.vector AS vector, (1.0 - t.score) AS score, "
f"t.page_content as page_content, t.metadata_ AS metadata_ " f"t.page_content as page_content, t.metadata_ AS metadata_ "
f"FROM (SELECT id, vector, page_content, metadata_, vector <=> %s AS score " f"FROM (SELECT id, vector, page_content, metadata_, vector <=> %s AS score "
f"FROM {self.table_name} ORDER BY score LIMIT {top_k} ) t", f"FROM {self.table_name} {where_clause} ORDER BY score LIMIT {top_k} ) t",
(query_vector_str,), (query_vector_str,),
) )
documents = [] documents = []
@ -220,12 +225,17 @@ class AnalyticdbVectorBySql:
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]: def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 4) top_k = kwargs.get("top_k", 4)
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = ""
if document_ids_filter:
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause += f"AND metadata_->>'doc_id' IN ({doc_ids})"
with self._get_cursor() as cur: with self._get_cursor() as cur:
cur.execute( cur.execute(
f"""SELECT id, vector, page_content, metadata_, f"""SELECT id, vector, page_content, metadata_,
ts_rank(to_tsvector, to_tsquery_from_text(%s, 'zh_cn'), 32) AS score ts_rank(to_tsvector, to_tsquery_from_text(%s, 'zh_cn'), 32) AS score
FROM {self.table_name} FROM {self.table_name}
WHERE to_tsvector@@to_tsquery_from_text(%s, 'zh_cn') WHERE to_tsvector@@to_tsquery_from_text(%s, 'zh_cn') {where_clause}
ORDER BY score DESC ORDER BY score DESC
LIMIT {top_k}""", LIMIT {top_k}""",
(f"'{query}'", f"'{query}'"), (f"'{query}'", f"'{query}'"),

View File

@ -123,6 +123,16 @@ class BaiduVector(BaseVector):
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]: def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
query_vector = [float(val) if isinstance(val, np.float64) else val for val in query_vector] query_vector = [float(val) if isinstance(val, np.float64) else val for val in query_vector]
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
anns = AnnSearch(
vector_field=self.field_vector,
vector_floats=query_vector,
params=HNSWSearchParams(ef=kwargs.get("ef", 10), limit=kwargs.get("top_k", 4)),
filter=f"doc_id IN ({doc_ids})",
)
else:
anns = AnnSearch( anns = AnnSearch(
vector_field=self.field_vector, vector_field=self.field_vector,
vector_floats=query_vector, vector_floats=query_vector,

View File

@ -95,6 +95,14 @@ class ChromaVector(BaseVector):
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]: def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
collection = self._client.get_or_create_collection(self._collection_name) collection = self._client.get_or_create_collection(self._collection_name)
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
results: QueryResult = collection.query(
query_embeddings=query_vector,
n_results=kwargs.get("top_k", 4),
where={"doc_id": {"$in": document_ids_filter}},
)
else:
results: QueryResult = collection.query(query_embeddings=query_vector, n_results=kwargs.get("top_k", 4)) results: QueryResult = collection.query(query_embeddings=query_vector, n_results=kwargs.get("top_k", 4))
score_threshold = float(kwargs.get("score_threshold") or 0.0) score_threshold = float(kwargs.get("score_threshold") or 0.0)

View File

@ -117,6 +117,9 @@ class ElasticSearchVector(BaseVector):
top_k = kwargs.get("top_k", 4) top_k = kwargs.get("top_k", 4)
num_candidates = math.ceil(top_k * 1.5) num_candidates = math.ceil(top_k * 1.5)
knn = {"field": Field.VECTOR.value, "query_vector": query_vector, "k": top_k, "num_candidates": num_candidates} knn = {"field": Field.VECTOR.value, "query_vector": query_vector, "k": top_k, "num_candidates": num_candidates}
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
knn["filter"] = {"terms": {"metadata.doc_id": document_ids_filter}}
results = self._client.search(index=self._collection_name, knn=knn, size=top_k) results = self._client.search(index=self._collection_name, knn=knn, size=top_k)
@ -145,6 +148,9 @@ class ElasticSearchVector(BaseVector):
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]: def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
query_str = {"match": {Field.CONTENT_KEY.value: query}} query_str = {"match": {Field.CONTENT_KEY.value: query}}
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
query_str["filter"] = {"terms": {"metadata.doc_id": document_ids_filter}}
results = self._client.search(index=self._collection_name, query=query_str, size=kwargs.get("top_k", 4)) results = self._client.search(index=self._collection_name, query=query_str, size=kwargs.get("top_k", 4))
docs = [] docs = []
for hit in results["hits"]["hits"]: for hit in results["hits"]["hits"]:

View File

@ -168,7 +168,12 @@ class LindormVectorStore(BaseVector):
raise ValueError("All elements in query_vector should be floats") raise ValueError("All elements in query_vector should be floats")
top_k = kwargs.get("top_k", 10) top_k = kwargs.get("top_k", 10)
query = default_vector_search_query(query_vector=query_vector, k=top_k, **kwargs) document_ids_filter = kwargs.get("document_ids_filter")
filters = []
if document_ids_filter:
filters.append({"terms": {"metadata.doc_id": document_ids_filter}})
query = default_vector_search_query(query_vector=query_vector, k=top_k, filters=filters, **kwargs)
try: try:
params = {} params = {}
if self._using_ugc: if self._using_ugc:
@ -206,7 +211,10 @@ class LindormVectorStore(BaseVector):
should = kwargs.get("should") should = kwargs.get("should")
minimum_should_match = kwargs.get("minimum_should_match", 0) minimum_should_match = kwargs.get("minimum_should_match", 0)
top_k = kwargs.get("top_k", 10) top_k = kwargs.get("top_k", 10)
filters = kwargs.get("filter") filters = kwargs.get("filter", [])
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
filters.append({"terms": {"metadata.doc_id": document_ids_filter}})
routing = self._routing routing = self._routing
full_text_query = default_text_search_query( full_text_query = default_text_search_query(
query_text=query, query_text=query,

View File

@ -218,12 +218,18 @@ class MilvusVector(BaseVector):
""" """
Search for documents by vector similarity. Search for documents by vector similarity.
""" """
document_ids_filter = kwargs.get("document_ids_filter")
filter = ""
if document_ids_filter:
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
filter = f'metadata["doc_id"] in ({doc_ids})'
results = self._client.search( results = self._client.search(
collection_name=self._collection_name, collection_name=self._collection_name,
data=[query_vector], data=[query_vector],
anns_field=Field.VECTOR.value, anns_field=Field.VECTOR.value,
limit=kwargs.get("top_k", 4), limit=kwargs.get("top_k", 4),
output_fields=[Field.CONTENT_KEY.value, Field.METADATA_KEY.value], output_fields=[Field.CONTENT_KEY.value, Field.METADATA_KEY.value],
filter=filter,
) )
return self._process_search_results( return self._process_search_results(
@ -239,6 +245,11 @@ class MilvusVector(BaseVector):
if not self._hybrid_search_enabled or not self.field_exists(Field.SPARSE_VECTOR.value): if not self._hybrid_search_enabled or not self.field_exists(Field.SPARSE_VECTOR.value):
logger.warning("Full-text search is not supported in current Milvus version (requires >= 2.5.0)") logger.warning("Full-text search is not supported in current Milvus version (requires >= 2.5.0)")
return [] return []
document_ids_filter = kwargs.get("document_ids_filter")
filter = ""
if document_ids_filter:
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
filter = f'metadata["doc_id"] in ({doc_ids})'
results = self._client.search( results = self._client.search(
collection_name=self._collection_name, collection_name=self._collection_name,
@ -246,6 +257,7 @@ class MilvusVector(BaseVector):
anns_field=Field.SPARSE_VECTOR.value, anns_field=Field.SPARSE_VECTOR.value,
limit=kwargs.get("top_k", 4), limit=kwargs.get("top_k", 4),
output_fields=[Field.CONTENT_KEY.value, Field.METADATA_KEY.value], output_fields=[Field.CONTENT_KEY.value, Field.METADATA_KEY.value],
filter=filter,
) )
return self._process_search_results( return self._process_search_results(

View File

@ -131,6 +131,10 @@ class MyScaleVector(BaseVector):
if self._metric.upper() == "COSINE" and order == SortOrder.ASC and score_threshold > 0.0 if self._metric.upper() == "COSINE" and order == SortOrder.ASC and score_threshold > 0.0
else "" else ""
) )
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_str = f"{where_str} AND metadata['doc_id'] in ({doc_ids})"
sql = f""" sql = f"""
SELECT text, vector, metadata, {dist} as dist FROM {self._config.database}.{self._collection_name} SELECT text, vector, metadata, {dist} as dist FROM {self._config.database}.{self._collection_name}
{where_str} ORDER BY dist {order.value} LIMIT {top_k} {where_str} ORDER BY dist {order.value} LIMIT {top_k}

View File

@ -154,6 +154,11 @@ class OceanBaseVector(BaseVector):
return [] return []
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]: def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = None
if document_ids_filter:
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause = f"metadata->>'$.doc_id' in ({doc_ids})"
ef_search = kwargs.get("ef_search", self._hnsw_ef_search) ef_search = kwargs.get("ef_search", self._hnsw_ef_search)
if ef_search != self._hnsw_ef_search: if ef_search != self._hnsw_ef_search:
self._client.set_ob_hnsw_ef_search(ef_search) self._client.set_ob_hnsw_ef_search(ef_search)
@ -167,6 +172,7 @@ class OceanBaseVector(BaseVector):
distance_func=func.l2_distance, distance_func=func.l2_distance,
output_column_names=["text", "metadata"], output_column_names=["text", "metadata"],
with_dist=True, with_dist=True,
where_clause=where_clause,
) )
docs = [] docs = []
for text, metadata, distance in cur: for text, metadata, distance in cur:

View File

@ -154,6 +154,9 @@ class OpenSearchVector(BaseVector):
"size": kwargs.get("top_k", 4), "size": kwargs.get("top_k", 4),
"query": {"knn": {Field.VECTOR.value: {Field.VECTOR.value: query_vector, "k": kwargs.get("top_k", 4)}}}, "query": {"knn": {Field.VECTOR.value: {Field.VECTOR.value: query_vector, "k": kwargs.get("top_k", 4)}}},
} }
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
query["query"] = {"terms": {"metadata.doc_id": document_ids_filter}}
try: try:
response = self._client.search(index=self._collection_name.lower(), body=query) response = self._client.search(index=self._collection_name.lower(), body=query)
@ -179,6 +182,9 @@ class OpenSearchVector(BaseVector):
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]: def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
full_text_query = {"query": {"match": {Field.CONTENT_KEY.value: query}}} full_text_query = {"query": {"match": {Field.CONTENT_KEY.value: query}}}
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
full_text_query["query"]["terms"] = {"metadata.doc_id": document_ids_filter}
response = self._client.search(index=self._collection_name.lower(), body=full_text_query) response = self._client.search(index=self._collection_name.lower(), body=full_text_query)

View File

@ -185,10 +185,15 @@ class OracleVector(BaseVector):
:return: List of Documents that are nearest to the query vector. :return: List of Documents that are nearest to the query vector.
""" """
top_k = kwargs.get("top_k", 4) top_k = kwargs.get("top_k", 4)
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = ""
if document_ids_filter:
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause = f"WHERE metadata->>'doc_id' in ({doc_ids})"
with self._get_cursor() as cur: with self._get_cursor() as cur:
cur.execute( cur.execute(
f"SELECT meta, text, vector_distance(embedding,:1) AS distance FROM {self.table_name}" f"SELECT meta, text, vector_distance(embedding,:1) AS distance FROM {self.table_name}"
f" ORDER BY distance fetch first {top_k} rows only", f" {where_clause} ORDER BY distance fetch first {top_k} rows only",
[numpy.array(query_vector)], [numpy.array(query_vector)],
) )
docs = [] docs = []
@ -241,9 +246,15 @@ class OracleVector(BaseVector):
if token not in stop_words: if token not in stop_words:
entities.append(token) entities.append(token)
with self._get_cursor() as cur: with self._get_cursor() as cur:
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = ""
if document_ids_filter:
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause = f" AND metadata->>'doc_id' in ({doc_ids}) "
cur.execute( cur.execute(
f"select meta, text, embedding FROM {self.table_name}" f"select meta, text, embedding FROM {self.table_name}"
f" WHERE CONTAINS(text, :1, 1) > 0 order by score(1) desc fetch first {top_k} rows only", f"WHERE CONTAINS(text, :1, 1) > 0 {where_clause} "
f"order by score(1) desc fetch first {top_k} rows only",
[" ACCUM ".join(entities)], [" ACCUM ".join(entities)],
) )
docs = [] docs = []

View File

@ -189,6 +189,9 @@ class PGVectoRS(BaseVector):
.limit(kwargs.get("top_k", 4)) .limit(kwargs.get("top_k", 4))
.order_by("distance") .order_by("distance")
) )
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
stmt = stmt.where(self._table.meta["doc_id"].in_(document_ids_filter))
res = session.execute(stmt) res = session.execute(stmt)
results = [(row[0], row[1]) for row in res] results = [(row[0], row[1]) for row in res]

View File

@ -155,10 +155,16 @@ class PGVector(BaseVector):
:return: List of Documents that are nearest to the query vector. :return: List of Documents that are nearest to the query vector.
""" """
top_k = kwargs.get("top_k", 4) top_k = kwargs.get("top_k", 4)
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = ""
if document_ids_filter:
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause = f" WHERE metadata->>'doc_id' in ({doc_ids}) "
with self._get_cursor() as cur: with self._get_cursor() as cur:
cur.execute( cur.execute(
f"SELECT meta, text, embedding <=> %s AS distance FROM {self.table_name}" f"SELECT meta, text, embedding <=> %s AS distance FROM {self.table_name}"
f" {where_clause}"
f" ORDER BY distance LIMIT {top_k}", f" ORDER BY distance LIMIT {top_k}",
(json.dumps(query_vector),), (json.dumps(query_vector),),
) )
@ -176,10 +182,16 @@ class PGVector(BaseVector):
top_k = kwargs.get("top_k", 5) top_k = kwargs.get("top_k", 5)
with self._get_cursor() as cur: with self._get_cursor() as cur:
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = ""
if document_ids_filter:
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause = f" AND metadata->>'doc_id' in ({doc_ids}) "
cur.execute( cur.execute(
f"""SELECT meta, text, ts_rank(to_tsvector(coalesce(text, '')), plainto_tsquery(%s)) AS score f"""SELECT meta, text, ts_rank(to_tsvector(coalesce(text, '')), plainto_tsquery(%s)) AS score
FROM {self.table_name} FROM {self.table_name}
WHERE to_tsvector(text) @@ plainto_tsquery(%s) WHERE to_tsvector(text) @@ plainto_tsquery(%s)
{where_clause}
ORDER BY score DESC ORDER BY score DESC
LIMIT {top_k}""", LIMIT {top_k}""",
# f"'{query}'" is required in order to account for whitespace in query # f"'{query}'" is required in order to account for whitespace in query

View File

@ -286,13 +286,12 @@ class QdrantVector(BaseVector):
from qdrant_client.http import models from qdrant_client.http import models
from qdrant_client.http.exceptions import UnexpectedResponse from qdrant_client.http.exceptions import UnexpectedResponse
for node_id in ids:
try: try:
filter = models.Filter( filter = models.Filter(
must=[ must=[
models.FieldCondition( models.FieldCondition(
key="metadata.doc_id", key="metadata.doc_id",
match=models.MatchValue(value=node_id), match=models.MatchAny(any=ids),
), ),
], ],
) )
@ -331,6 +330,14 @@ class QdrantVector(BaseVector):
), ),
], ],
) )
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
filter.must.append(
models.FieldCondition(
key="metadata.doc_id",
match=models.MatchAny(any=document_ids_filter),
)
)
results = self._client.search( results = self._client.search(
collection_name=self._collection_name, collection_name=self._collection_name,
query_vector=query_vector, query_vector=query_vector,
@ -377,6 +384,14 @@ class QdrantVector(BaseVector):
), ),
] ]
) )
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
scroll_filter.must.append(
models.FieldCondition(
key="metadata.doc_id",
match=models.MatchAny(any=document_ids_filter),
)
)
response = self._client.scroll( response = self._client.scroll(
collection_name=self._collection_name, collection_name=self._collection_name,
scroll_filter=scroll_filter, scroll_filter=scroll_filter,
@ -393,28 +408,6 @@ class QdrantVector(BaseVector):
return documents return documents
def update_metadata(self, document_id: str, metadata: dict) -> None:
from qdrant_client.http import models
scroll_filter = models.Filter(
must=[
models.FieldCondition(
key="group_id",
match=models.MatchValue(value=self._group_id),
),
models.FieldCondition(
key="metadata.doc_id",
match=models.MatchValue(value=document_id),
),
]
)
self._client.set_payload(
collection_name=self._collection_name,
filter=scroll_filter,
payload={
Field.METADATA_KEY.value: metadata,
},
)
def _reload_if_needed(self): def _reload_if_needed(self):
if isinstance(self._client, QdrantLocal): if isinstance(self._client, QdrantLocal):
self._client = cast(QdrantLocal, self._client) self._client = cast(QdrantLocal, self._client)

View File

@ -223,8 +223,12 @@ class RelytVector(BaseVector):
return len(result) > 0 return len(result) > 0
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]: def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
document_ids_filter = kwargs.get("document_ids_filter")
filter = kwargs.get("filter", {})
if document_ids_filter:
filter["doc_id"] = document_ids_filter
results = self.similarity_search_with_score_by_vector( results = self.similarity_search_with_score_by_vector(
k=int(kwargs.get("top_k", 4)), embedding=query_vector, filter=kwargs.get("filter") k=int(kwargs.get("top_k", 4)), embedding=query_vector, filter=filter
) )
# Organize results. # Organize results.
@ -246,9 +250,9 @@ class RelytVector(BaseVector):
filter_condition = "" filter_condition = ""
if filter is not None: if filter is not None:
conditions = [ conditions = [
f"metadata->>{key!r} in ({', '.join(map(repr, value))})" f"metadata->>'{key!r}' in ({', '.join(map(repr, value))})"
if len(value) > 1 if len(value) > 1
else f"metadata->>{key!r} = {value[0]!r}" else f"metadata->>'{key!r}' = {value[0]!r}"
for key, value in filter.items() for key, value in filter.items()
] ]
filter_condition = f"WHERE {' AND '.join(conditions)}" filter_condition = f"WHERE {' AND '.join(conditions)}"

View File

@ -145,11 +145,16 @@ class TencentVector(BaseVector):
self._db.collection(self._collection_name).delete(document_ids=ids) self._db.collection(self._collection_name).delete(document_ids=ids)
def delete_by_metadata_field(self, key: str, value: str) -> None: def delete_by_metadata_field(self, key: str, value: str) -> None:
self._db.collection(self._collection_name).delete(filter=Filter(Filter.In(key, [value]))) self._db.collection(self._collection_name).delete(filter=Filter(Filter.In(f"metadata.{key}", [value])))
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]: def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
document_ids_filter = kwargs.get("document_ids_filter")
filter = None
if document_ids_filter:
filter = Filter(Filter.In("metadata.doc_id", document_ids_filter))
res = self._db.collection(self._collection_name).search( res = self._db.collection(self._collection_name).search(
vectors=[query_vector], vectors=[query_vector],
filter=filter,
params=document.HNSWSearchParams(ef=kwargs.get("ef", 10)), params=document.HNSWSearchParams(ef=kwargs.get("ef", 10)),
retrieve_vector=False, retrieve_vector=False,
limit=kwargs.get("top_k", 4), limit=kwargs.get("top_k", 4),

View File

@ -326,6 +326,14 @@ class TidbOnQdrantVector(BaseVector):
), ),
], ],
) )
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
filter.must.append(
models.FieldCondition(
key="metadata.doc_id",
match=models.MatchAny(any=document_ids_filter),
)
)
results = self._client.search( results = self._client.search(
collection_name=self._collection_name, collection_name=self._collection_name,
query_vector=query_vector, query_vector=query_vector,
@ -368,6 +376,14 @@ class TidbOnQdrantVector(BaseVector):
) )
] ]
) )
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
scroll_filter.must.append(
models.FieldCondition(
key="metadata.doc_id",
match=models.MatchAny(any=document_ids_filter),
)
)
response = self._client.scroll( response = self._client.scroll(
collection_name=self._collection_name, collection_name=self._collection_name,
scroll_filter=scroll_filter, scroll_filter=scroll_filter,

View File

@ -196,6 +196,11 @@ class TiDBVector(BaseVector):
docs = [] docs = []
tidb_dist_func = self._get_distance_func() tidb_dist_func = self._get_distance_func()
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = ""
if document_ids_filter:
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause = f" WHERE meta->>'$.doc_id' in ({doc_ids}) "
with Session(self._engine) as session: with Session(self._engine) as session:
select_statement = sql_text(f""" select_statement = sql_text(f"""
@ -206,6 +211,7 @@ class TiDBVector(BaseVector):
text, text,
{tidb_dist_func}(vector, :query_vector_str) AS distance {tidb_dist_func}(vector, :query_vector_str) AS distance
FROM {self._collection_name} FROM {self._collection_name}
{where_clause}
ORDER BY distance ASC ORDER BY distance ASC
LIMIT :top_k LIMIT :top_k
) t ) t

View File

@ -88,7 +88,19 @@ class UpstashVector(BaseVector):
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]: def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 4) top_k = kwargs.get("top_k", 4)
result = self.index.query(vector=query_vector, top_k=top_k, include_metadata=True, include_data=True) document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
filter = f"doc_id in ({', '.join(f"'{id}'" for id in document_ids_filter)})"
else:
filter = ""
result = self.index.query(
vector=query_vector,
top_k=top_k,
include_metadata=True,
include_data=True,
include_vectors=False,
filter=filter,
)
docs = [] docs = []
score_threshold = float(kwargs.get("score_threshold") or 0.0) score_threshold = float(kwargs.get("score_threshold") or 0.0)
for record in result: for record in result:

View File

@ -177,7 +177,11 @@ class VikingDBVector(BaseVector):
query_vector, limit=kwargs.get("top_k", 4) query_vector, limit=kwargs.get("top_k", 4)
) )
score_threshold = float(kwargs.get("score_threshold") or 0.0) score_threshold = float(kwargs.get("score_threshold") or 0.0)
return self._get_search_res(results, score_threshold) docs = self._get_search_res(results, score_threshold)
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
docs = [doc for doc in docs if doc.metadata.get("doc_id") in document_ids_filter]
return docs
def _get_search_res(self, results, score_threshold) -> list[Document]: def _get_search_res(self, results, score_threshold) -> list[Document]:
if len(results) == 0: if len(results) == 0:

View File

@ -168,11 +168,11 @@ class WeaviateVector(BaseVector):
# check whether the index already exists # check whether the index already exists
schema = self._default_schema(self._collection_name) schema = self._default_schema(self._collection_name)
if self._client.schema.contains(schema): if self._client.schema.contains(schema):
for uuid in ids:
try: try:
self._client.data_object.delete( self._client.batch.delete_objects(
class_name=self._collection_name, class_name=self._collection_name,
uuid=uuid, where={"operator": "ContainsAny", "path": ["id"], "valueTextArray": ids},
output="minimal",
) )
except weaviate.UnexpectedStatusCodeException as e: except weaviate.UnexpectedStatusCodeException as e:
# tolerate not found error # tolerate not found error
@ -187,8 +187,10 @@ class WeaviateVector(BaseVector):
query_obj = self._client.query.get(collection_name, properties) query_obj = self._client.query.get(collection_name, properties)
vector = {"vector": query_vector} vector = {"vector": query_vector}
if kwargs.get("where_filter"): document_ids_filter = kwargs.get("document_ids_filter")
query_obj = query_obj.with_where(kwargs.get("where_filter")) if document_ids_filter:
where_filter = {"operator": "ContainsAny", "path": ["doc_id"], "valueTextArray": document_ids_filter}
query_obj = query_obj.with_where(where_filter)
result = ( result = (
query_obj.with_near_vector(vector) query_obj.with_near_vector(vector)
.with_limit(kwargs.get("top_k", 4)) .with_limit(kwargs.get("top_k", 4))
@ -233,8 +235,10 @@ class WeaviateVector(BaseVector):
if kwargs.get("search_distance"): if kwargs.get("search_distance"):
content["certainty"] = kwargs.get("search_distance") content["certainty"] = kwargs.get("search_distance")
query_obj = self._client.query.get(collection_name, properties) query_obj = self._client.query.get(collection_name, properties)
if kwargs.get("where_filter"): document_ids_filter = kwargs.get("document_ids_filter")
query_obj = query_obj.with_where(kwargs.get("where_filter")) if document_ids_filter:
where_filter = {"operator": "ContainsAny", "path": ["doc_id"], "valueTextArray": document_ids_filter}
query_obj = query_obj.with_where(where_filter)
query_obj = query_obj.with_additional(["vector"]) query_obj = query_obj.with_additional(["vector"])
properties = ["text"] properties = ["text"]
result = query_obj.with_bm25(query=query, properties=properties).with_limit(kwargs.get("top_k", 4)).do() result = query_obj.with_bm25(query=query, properties=properties).with_limit(kwargs.get("top_k", 4)).do()

View File

@ -0,0 +1,9 @@
from enum import Enum
class BuiltInField(str, Enum):
document_name = "document_name"
uploader = "uploader"
upload_date = "upload_date"
last_update_date = "last_update_date"
source = "source"

View File

@ -239,6 +239,7 @@ class DatasetRetrieval:
model_config: ModelConfigWithCredentialsEntity, model_config: ModelConfigWithCredentialsEntity,
planning_strategy: PlanningStrategy, planning_strategy: PlanningStrategy,
message_id: Optional[str] = None, message_id: Optional[str] = None,
metadata_filter_document_ids: Optional[dict[str, list[str]]] = None,
): ):
tools = [] tools = []
for dataset in available_datasets: for dataset in available_datasets:
@ -293,6 +294,11 @@ class DatasetRetrieval:
document.metadata["dataset_name"] = dataset.name document.metadata["dataset_name"] = dataset.name
results.append(document) results.append(document)
else: else:
document_ids_filter = None
if metadata_filter_document_ids:
document_ids = metadata_filter_document_ids.get(dataset.id, [])
if document_ids:
document_ids_filter = document_ids
retrieval_model_config = dataset.retrieval_model or default_retrieval_model retrieval_model_config = dataset.retrieval_model or default_retrieval_model
# get top k # get top k
@ -324,6 +330,7 @@ class DatasetRetrieval:
reranking_model=reranking_model, reranking_model=reranking_model,
reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"), reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
weights=retrieval_model_config.get("weights", None), weights=retrieval_model_config.get("weights", None),
document_ids_filter=document_ids_filter,
) )
self._on_query(query, [dataset_id], app_id, user_from, user_id) self._on_query(query, [dataset_id], app_id, user_from, user_id)

View File

@ -195,7 +195,7 @@ class CodeNode(BaseNode[CodeNodeData]):
if output_config.type == "object": if output_config.type == "object":
# check if output is object # check if output is object
if not isinstance(result.get(output_name), dict): if not isinstance(result.get(output_name), dict):
if isinstance(result.get(output_name), type(None)): if result.get(output_name) is None:
transformed_result[output_name] = None transformed_result[output_name] = None
else: else:
raise OutputValidationError( raise OutputValidationError(
@ -223,7 +223,7 @@ class CodeNode(BaseNode[CodeNodeData]):
elif output_config.type == "array[number]": elif output_config.type == "array[number]":
# check if array of number available # check if array of number available
if not isinstance(result[output_name], list): if not isinstance(result[output_name], list):
if isinstance(result[output_name], type(None)): if result[output_name] is None:
transformed_result[output_name] = None transformed_result[output_name] = None
else: else:
raise OutputValidationError( raise OutputValidationError(
@ -244,7 +244,7 @@ class CodeNode(BaseNode[CodeNodeData]):
elif output_config.type == "array[string]": elif output_config.type == "array[string]":
# check if array of string available # check if array of string available
if not isinstance(result[output_name], list): if not isinstance(result[output_name], list):
if isinstance(result[output_name], type(None)): if result[output_name] is None:
transformed_result[output_name] = None transformed_result[output_name] = None
else: else:
raise OutputValidationError( raise OutputValidationError(
@ -265,7 +265,7 @@ class CodeNode(BaseNode[CodeNodeData]):
elif output_config.type == "array[object]": elif output_config.type == "array[object]":
# check if array of object available # check if array of object available
if not isinstance(result[output_name], list): if not isinstance(result[output_name], list):
if isinstance(result[output_name], type(None)): if result[output_name] is None:
transformed_result[output_name] = None transformed_result[output_name] = None
else: else:
raise OutputValidationError( raise OutputValidationError(

View File

@ -1,8 +1,10 @@
from collections.abc import Sequence
from typing import Any, Literal, Optional from typing import Any, Literal, Optional
from pydantic import BaseModel from pydantic import BaseModel, Field
from core.workflow.nodes.base import BaseNodeData from core.workflow.nodes.base import BaseNodeData
from core.workflow.nodes.llm.entities import VisionConfig
class RerankingModelConfig(BaseModel): class RerankingModelConfig(BaseModel):
@ -73,6 +75,39 @@ class SingleRetrievalConfig(BaseModel):
model: ModelConfig model: ModelConfig
SupportedComparisonOperator = Literal[
# for string or array
"contains",
"not contains",
"starts with",
"ends with",
"is",
"is not",
"empty",
"is not empty",
# for number
"=",
"",
">",
"<",
"",
"",
# for time
"before",
"after",
]
class Condition(BaseModel):
"""
Conditon detail
"""
metadata_name: str
comparison_operator: SupportedComparisonOperator
value: str | Sequence[str] | None = None
class MetadataFilteringCondition(BaseModel): class MetadataFilteringCondition(BaseModel):
""" """
Metadata Filtering Condition. Metadata Filtering Condition.
@ -94,4 +129,6 @@ class KnowledgeRetrievalNodeData(BaseNodeData):
multiple_retrieval_config: Optional[MultipleRetrievalConfig] = None multiple_retrieval_config: Optional[MultipleRetrievalConfig] = None
single_retrieval_config: Optional[SingleRetrievalConfig] = None single_retrieval_config: Optional[SingleRetrievalConfig] = None
metadata_filtering_mode: Optional[Literal["disabled", "automatic", "manual"]] = "disabled" metadata_filtering_mode: Optional[Literal["disabled", "automatic", "manual"]] = "disabled"
metadata_filtering_conditions: Optional[dict[str, Any]] = None metadata_model_config: Optional[ModelConfig] = None
metadata_filtering_conditions: Optional[MetadataFilteringCondition] = None
vision: VisionConfig = Field(default_factory=VisionConfig)

View File

@ -16,3 +16,7 @@ class ModelNotSupportedError(KnowledgeRetrievalNodeError):
class ModelQuotaExceededError(KnowledgeRetrievalNodeError): class ModelQuotaExceededError(KnowledgeRetrievalNodeError):
"""Raised when the model provider quota is exceeded.""" """Raised when the model provider quota is exceeded."""
class InvalidModelTypeError(KnowledgeRetrievalNodeError):
"""Raised when the model is not a Large Language Model."""

View File

@ -1,6 +1,8 @@
import json
import logging import logging
from collections import defaultdict
from collections.abc import Mapping, Sequence from collections.abc import Mapping, Sequence
from typing import Any, cast from typing import Any, Optional, cast
from sqlalchemy import func from sqlalchemy import func
@ -9,21 +11,38 @@ from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEnti
from core.entities.agent_entities import PlanningStrategy from core.entities.agent_entities import PlanningStrategy
from core.entities.model_entities import ModelStatus from core.entities.model_entities import ModelStatus
from core.model_manager import ModelInstance, ModelManager from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.model_entities import ModelFeature, ModelType from core.model_runtime.entities.message_entities import PromptMessageRole
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey, ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
from core.prompt.simple_prompt_transform import ModelMode
from core.rag.datasource.retrieval_service import RetrievalService from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
from core.rag.retrieval.retrieval_methods import RetrievalMethod from core.rag.retrieval.retrieval_methods import RetrievalMethod
from core.variables import StringSegment from core.variables import StringSegment
from core.workflow.entities.node_entities import NodeRunResult from core.workflow.entities.node_entities import NodeRunResult
from core.workflow.nodes.base import BaseNode
from core.workflow.nodes.enums import NodeType from core.workflow.nodes.enums import NodeType
from core.workflow.nodes.event.event import ModelInvokeCompletedEvent
from core.workflow.nodes.knowledge_retrieval.template_prompts import (
METADATA_FILTER_ASSISTANT_PROMPT_1,
METADATA_FILTER_ASSISTANT_PROMPT_2,
METADATA_FILTER_COMPLETION_PROMPT,
METADATA_FILTER_SYSTEM_PROMPT,
METADATA_FILTER_USER_PROMPT_1,
METADATA_FILTER_USER_PROMPT_3,
)
from core.workflow.nodes.list_operator.exc import InvalidConditionError
from core.workflow.nodes.llm.entities import LLMNodeChatModelMessage, LLMNodeCompletionModelPromptTemplate
from core.workflow.nodes.llm.node import LLMNode
from core.workflow.nodes.question_classifier.template_prompts import QUESTION_CLASSIFIER_USER_PROMPT_2
from extensions.ext_database import db from extensions.ext_database import db
from models.dataset import Dataset, Document from libs.json_in_md_parser import parse_and_check_json_markdown
from models.dataset import Dataset, DatasetMetadata, Document
from models.workflow import WorkflowNodeExecutionStatus from models.workflow import WorkflowNodeExecutionStatus
from .entities import KnowledgeRetrievalNodeData from .entities import KnowledgeRetrievalNodeData
from .exc import ( from .exc import (
InvalidModelTypeError,
KnowledgeRetrievalNodeError, KnowledgeRetrievalNodeError,
ModelCredentialsNotInitializedError, ModelCredentialsNotInitializedError,
ModelNotExistError, ModelNotExistError,
@ -42,13 +61,14 @@ default_retrieval_model = {
} }
class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]): class KnowledgeRetrievalNode(LLMNode):
_node_data_cls = KnowledgeRetrievalNodeData _node_data_cls = KnowledgeRetrievalNodeData
_node_type = NodeType.KNOWLEDGE_RETRIEVAL _node_type = NodeType.KNOWLEDGE_RETRIEVAL
def _run(self) -> NodeRunResult: def _run(self) -> NodeRunResult:
node_data = cast(KnowledgeRetrievalNodeData, self.node_data)
# extract variables # extract variables
variable = self.graph_runtime_state.variable_pool.get(self.node_data.query_variable_selector) variable = self.graph_runtime_state.variable_pool.get(node_data.query_variable_selector)
if not isinstance(variable, StringSegment): if not isinstance(variable, StringSegment):
return NodeRunResult( return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED, status=WorkflowNodeExecutionStatus.FAILED,
@ -63,7 +83,7 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
) )
# retrieve knowledge # retrieve knowledge
try: try:
results = self._fetch_dataset_retriever(node_data=self.node_data, query=query) results = self._fetch_dataset_retriever(node_data=node_data, query=query)
outputs = {"result": results} outputs = {"result": results}
return NodeRunResult( return NodeRunResult(
status=WorkflowNodeExecutionStatus.SUCCEEDED, inputs=variables, process_data=None, outputs=outputs status=WorkflowNodeExecutionStatus.SUCCEEDED, inputs=variables, process_data=None, outputs=outputs
@ -95,8 +115,8 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
db.session.query(Document.dataset_id, func.count(Document.id).label("available_document_count")) db.session.query(Document.dataset_id, func.count(Document.id).label("available_document_count"))
.filter( .filter(
Document.indexing_status == "completed", Document.indexing_status == "completed",
Document.enabled == True, # noqa: E712 Document.enabled == True,
Document.archived == False, # noqa: E712 Document.archived == False,
Document.dataset_id.in_(dataset_ids), Document.dataset_id.in_(dataset_ids),
) )
.group_by(Document.dataset_id) .group_by(Document.dataset_id)
@ -117,6 +137,9 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
if not dataset: if not dataset:
continue continue
available_datasets.append(dataset) available_datasets.append(dataset)
metadata_filter_document_ids = self._get_metadata_filter_condition(
[dataset.id for dataset in available_datasets], query, node_data
)
all_documents = [] all_documents = []
dataset_retrieval = DatasetRetrieval() dataset_retrieval = DatasetRetrieval()
if node_data.retrieval_mode == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE.value: if node_data.retrieval_mode == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE.value:
@ -146,6 +169,7 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
model_config=model_config, model_config=model_config,
model_instance=model_instance, model_instance=model_instance,
planning_strategy=planning_strategy, planning_strategy=planning_strategy,
metadata_filter_document_ids=metadata_filter_document_ids,
) )
elif node_data.retrieval_mode == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE.value: elif node_data.retrieval_mode == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE.value:
if node_data.multiple_retrieval_config is None: if node_data.multiple_retrieval_config is None:
@ -221,8 +245,8 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
dataset = Dataset.query.filter_by(id=segment.dataset_id).first() dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
document = Document.query.filter( document = Document.query.filter(
Document.id == segment.document_id, Document.id == segment.document_id,
Document.enabled == True, # noqa: E712 Document.enabled == True,
Document.archived == False, # noqa: E712 Document.archived == False,
).first() ).first()
if dataset and document: if dataset and document:
source = { source = {
@ -258,6 +282,134 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
item["metadata"]["position"] = position item["metadata"]["position"] = position
return retrieval_resource_list return retrieval_resource_list
def _get_metadata_filter_condition(
self, dataset_ids: list, query: str, node_data: KnowledgeRetrievalNodeData
) -> dict[str, list[str]]:
document_query = db.session.query(Document.id).filter(
Document.dataset_id.in_(dataset_ids),
Document.indexing_status == "completed",
Document.enabled == True,
Document.archived == False,
)
if node_data.metadata_filtering_mode == "disabled":
return None
elif node_data.metadata_filtering_mode == "automatic":
automatic_metadata_filters = self._automatic_metadata_filter_func(dataset_ids, query, node_data)
if automatic_metadata_filters:
for filter in automatic_metadata_filters:
self._process_metadata_filter_func(
filter.get("condition"), filter.get("metadata_name"), filter.get("value"), document_query
)
elif node_data.metadata_filtering_mode == "manual":
for condition in node_data.metadata_filtering_conditions.conditions:
metadata_name = condition.metadata_name
expected_value = condition.value
if isinstance(expected_value, str):
expected_value = self.graph_runtime_state.variable_pool.convert_template(expected_value).text
self._process_metadata_filter_func(
condition.comparison_operator, metadata_name, expected_value, document_query
)
else:
raise ValueError("Invalid metadata filtering mode")
documnents = document_query.all()
# group by dataset_id
metadata_filter_document_ids = defaultdict(list)
for document in documnents:
metadata_filter_document_ids[document.dataset_id].append(document.id)
return metadata_filter_document_ids
def _automatic_metadata_filter_func(
self, dataset_ids: list, query: str, node_data: KnowledgeRetrievalNodeData
) -> list[dict[str, Any]]:
# get all metadata field
metadata_fields = db.session.query(DatasetMetadata).filter(DatasetMetadata.dataset_id.in_(dataset_ids)).all()
all_metadata_fields = [metadata_field.field_name for metadata_field in metadata_fields]
# get metadata model config
metadata_model_config = node_data.metadata_model_config
if metadata_model_config is None:
raise ValueError("metadata_model_config is required")
# get metadata model instance
# fetch model config
model_instance, model_config = self._fetch_model_config(node_data.metadata_model_config)
# fetch prompt messages
prompt_template = self._get_prompt_template(
node_data=node_data,
query=query or "",
metadata_fields=all_metadata_fields,
)
prompt_messages, stop = self._fetch_prompt_messages(
prompt_template=prompt_template,
sys_query=query,
memory=None,
model_config=model_config,
sys_files=[],
vision_enabled=node_data.vision.enabled,
vision_detail=node_data.vision.configs.detail,
variable_pool=self.graph_runtime_state.variable_pool,
jinja2_variables=[],
)
result_text = ""
try:
# handle invoke result
generator = self._invoke_llm(
node_data_model=node_data.model,
model_instance=model_instance,
prompt_messages=prompt_messages,
stop=stop,
)
for event in generator:
if isinstance(event, ModelInvokeCompletedEvent):
result_text = event.text
break
result_text_json = parse_and_check_json_markdown(result_text, [])
automatic_metadata_filters = []
if "metadata_map" in result_text_json:
metadata_map = result_text_json["metadata_map"]
for item in metadata_map:
if item.get("metadata_field_name") in all_metadata_fields:
automatic_metadata_filters.append(
{
"metadata_name": item.get("metadata_field_name"),
"value": item.get("metadata_field_value"),
"condition": item.get("comparison_operator"),
}
)
except Exception as e:
return None
return automatic_metadata_filters
def _process_metadata_filter_func(*, condition: str, metadata_name: str, value: str, query):
match condition:
case "contains":
query = query.filter(Document.doc_metadata[metadata_name].like(f"%{value}%"))
case "not contains":
query = query.filter(Document.doc_metadata[metadata_name].notlike(f"%{value}%"))
case "start with":
query = query.filter(Document.doc_metadata[metadata_name].like(f"{value}%"))
case "end with":
query = query.filter(Document.doc_metadata[metadata_name].like(f"%{value}"))
case "is", "=":
query = query.filter(Document.doc_metadata[metadata_name] == value)
case "is not", "":
query = query.filter(Document.doc_metadata[metadata_name] != value)
case "is empty":
query = query.filter(Document.doc_metadata[metadata_name].is_(None))
case "is not empty":
query = query.filter(Document.doc_metadata[metadata_name].isnot(None))
case "before", "<":
query = query.filter(Document.doc_metadata[metadata_name] < value)
case "after", ">":
query = query.filter(Document.doc_metadata[metadata_name] > value)
case "", ">=":
query = query.filter(Document.doc_metadata[metadata_name] <= value)
case "", ">=":
query = query.filter(Document.doc_metadata[metadata_name] >= value)
case _:
raise InvalidConditionError(f"Invalid condition: {condition}")
@classmethod @classmethod
def _extract_variable_selector_to_variable_mapping( def _extract_variable_selector_to_variable_mapping(
cls, cls,
@ -343,3 +495,94 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
parameters=completion_params, parameters=completion_params,
stop=stop, stop=stop,
) )
def _calculate_rest_token(
self,
node_data: KnowledgeRetrievalNodeData,
query: str,
model_config: ModelConfigWithCredentialsEntity,
context: Optional[str],
) -> int:
prompt_transform = AdvancedPromptTransform(with_variable_tmpl=True)
prompt_template = self._get_prompt_template(node_data, query, None, 2000)
prompt_messages = prompt_transform.get_prompt(
prompt_template=prompt_template,
inputs={},
query="",
files=[],
context=context,
memory_config=node_data.memory,
memory=None,
model_config=model_config,
)
rest_tokens = 2000
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
if model_context_tokens:
model_instance = ModelInstance(
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
)
curr_message_tokens = model_instance.get_llm_num_tokens(prompt_messages)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if parameter_rule.name == "max_tokens" or (
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
):
max_tokens = (
model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(parameter_rule.use_template or "")
) or 0
rest_tokens = model_context_tokens - max_tokens - curr_message_tokens
rest_tokens = max(rest_tokens, 0)
return rest_tokens
def _get_prompt_template(self, node_data: KnowledgeRetrievalNodeData, metadata_fields: list, query: str):
model_mode = ModelMode.value_of(node_data.metadata_model_config.mode)
input_text = query
memory_str = ""
prompt_messages: list[LLMNodeChatModelMessage] = []
if model_mode == ModelMode.CHAT:
system_prompt_messages = LLMNodeChatModelMessage(
role=PromptMessageRole.SYSTEM, text=METADATA_FILTER_SYSTEM_PROMPT
)
prompt_messages.append(system_prompt_messages)
user_prompt_message_1 = LLMNodeChatModelMessage(
role=PromptMessageRole.USER, text=METADATA_FILTER_USER_PROMPT_1
)
prompt_messages.append(user_prompt_message_1)
assistant_prompt_message_1 = LLMNodeChatModelMessage(
role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_1
)
prompt_messages.append(assistant_prompt_message_1)
user_prompt_message_2 = LLMNodeChatModelMessage(
role=PromptMessageRole.USER, text=QUESTION_CLASSIFIER_USER_PROMPT_2
)
prompt_messages.append(user_prompt_message_2)
assistant_prompt_message_2 = LLMNodeChatModelMessage(
role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_2
)
prompt_messages.append(assistant_prompt_message_2)
user_prompt_message_3 = LLMNodeChatModelMessage(
role=PromptMessageRole.USER,
text=METADATA_FILTER_USER_PROMPT_3.format(
input_text=input_text,
metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),
),
)
prompt_messages.append(user_prompt_message_3)
return prompt_messages
elif model_mode == ModelMode.COMPLETION:
return LLMNodeCompletionModelPromptTemplate(
text=METADATA_FILTER_COMPLETION_PROMPT.format(
input_text=input_text,
metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),
)
)
else:
raise InvalidModelTypeError(f"Model mode {model_mode} not support.")

View File

@ -53,6 +53,8 @@ external_knowledge_info_fields = {
"external_knowledge_api_endpoint": fields.String, "external_knowledge_api_endpoint": fields.String,
} }
doc_metadata_fields = {"id": fields.String, "name": fields.String, "type": fields.String}
dataset_detail_fields = { dataset_detail_fields = {
"id": fields.String, "id": fields.String,
"name": fields.String, "name": fields.String,
@ -76,6 +78,7 @@ dataset_detail_fields = {
"doc_form": fields.String, "doc_form": fields.String,
"external_knowledge_info": fields.Nested(external_knowledge_info_fields), "external_knowledge_info": fields.Nested(external_knowledge_info_fields),
"external_retrieval_model": fields.Nested(external_retrieval_model_fields, allow_null=True), "external_retrieval_model": fields.Nested(external_retrieval_model_fields, allow_null=True),
"doc_metadata": fields.List(fields.Nested(doc_metadata_fields)),
} }
dataset_query_detail_fields = { dataset_query_detail_fields = {

View File

@ -3,6 +3,13 @@ from flask_restful import fields # type: ignore
from fields.dataset_fields import dataset_fields from fields.dataset_fields import dataset_fields
from libs.helper import TimestampField from libs.helper import TimestampField
document_metadata_fields = {
"id": fields.String,
"name": fields.String,
"type": fields.String,
"value": fields.String,
}
document_fields = { document_fields = {
"id": fields.String, "id": fields.String,
"position": fields.Integer, "position": fields.Integer,
@ -25,6 +32,7 @@ document_fields = {
"word_count": fields.Integer, "word_count": fields.Integer,
"hit_count": fields.Integer, "hit_count": fields.Integer,
"doc_form": fields.String, "doc_form": fields.String,
"doc_metadata_details": fields.List(fields.Nested(document_metadata_fields)),
} }
document_with_segments_fields = { document_with_segments_fields = {
@ -51,6 +59,7 @@ document_with_segments_fields = {
"hit_count": fields.Integer, "hit_count": fields.Integer,
"completed_segments": fields.Integer, "completed_segments": fields.Integer,
"total_segments": fields.Integer, "total_segments": fields.Integer,
"doc_metadata_details": fields.List(fields.Nested(document_metadata_fields)),
} }
dataset_and_document_fields = { dataset_and_document_fields = {

View File

@ -198,6 +198,19 @@ class Dataset(db.Model): # type: ignore[name-defined]
"external_knowledge_api_endpoint": json.loads(external_knowledge_api.settings).get("endpoint", ""), "external_knowledge_api_endpoint": json.loads(external_knowledge_api.settings).get("endpoint", ""),
} }
@property
def doc_metadata(self):
dataset_metadatas = db.session.query(DatasetMetadata).filter(DatasetMetadata.dataset_id == self.id).all()
return [
{
"id": dataset_metadata.id,
"name": dataset_metadata.name,
"type": dataset_metadata.type,
}
for dataset_metadata in dataset_metadatas
]
@staticmethod @staticmethod
def gen_collection_name_by_id(dataset_id: str) -> str: def gen_collection_name_by_id(dataset_id: str) -> str:
normalized_dataset_id = dataset_id.replace("-", "_") normalized_dataset_id = dataset_id.replace("-", "_")
@ -251,6 +264,7 @@ class Document(db.Model): # type: ignore[name-defined]
db.Index("document_dataset_id_idx", "dataset_id"), db.Index("document_dataset_id_idx", "dataset_id"),
db.Index("document_is_paused_idx", "is_paused"), db.Index("document_is_paused_idx", "is_paused"),
db.Index("document_tenant_idx", "tenant_id"), db.Index("document_tenant_idx", "tenant_id"),
db.Index("document_metadata_idx", "doc_metadata", postgresql_using="gin"),
) )
# initial fields # initial fields
@ -307,7 +321,7 @@ class Document(db.Model): # type: ignore[name-defined]
archived_at = db.Column(db.DateTime, nullable=True) archived_at = db.Column(db.DateTime, nullable=True)
updated_at = db.Column(db.DateTime, nullable=False, server_default=func.current_timestamp()) updated_at = db.Column(db.DateTime, nullable=False, server_default=func.current_timestamp())
doc_type = db.Column(db.String(40), nullable=True) doc_type = db.Column(db.String(40), nullable=True)
doc_metadata = db.Column(db.JSON, nullable=True) doc_metadata = db.Column(JSONB, nullable=True)
doc_form = db.Column(db.String(255), nullable=False, server_default=db.text("'text_model'::character varying")) doc_form = db.Column(db.String(255), nullable=False, server_default=db.text("'text_model'::character varying"))
doc_language = db.Column(db.String(255), nullable=True) doc_language = db.Column(db.String(255), nullable=True)
@ -410,6 +424,28 @@ class Document(db.Model): # type: ignore[name-defined]
def last_update_date(self): def last_update_date(self):
return self.updated_at return self.updated_at
@property
def doc_metadata_details(self):
if self.doc_metadata:
document_metadatas = (
db.session.query(DatasetMetadata)
.join(DatasetMetadataBinding, DatasetMetadataBinding.metadata_id == DatasetMetadata.id)
.filter(
DatasetMetadataBinding.dataset_id == self.dataset_id, DatasetMetadataBinding.document_id == self.id
)
.all()
)
metadata_list = []
for metadata in document_metadatas:
metadata_dict = {
"id": metadata.id,
"name": metadata.name,
"type": metadata.type,
"value": self.doc_metadata.get(metadata.type),
}
metadata_list.append(metadata_dict)
return metadata_list
return None
def process_rule_dict(self): def process_rule_dict(self):
if self.dataset_process_rule_id: if self.dataset_process_rule_id:

View File

@ -585,28 +585,43 @@ class DocumentService:
@staticmethod @staticmethod
def get_document_by_ids(document_ids: list[str]) -> list[Document]: def get_document_by_ids(document_ids: list[str]) -> list[Document]:
documents = db.session.query(Document).filter(Document.id.in_(document_ids), documents = (
db.session.query(Document)
.filter(
Document.id.in_(document_ids),
Document.enabled == True, Document.enabled == True,
Document.indexing_status == "completed", Document.indexing_status == "completed",
Document.archived == False, Document.archived == False,
).all() )
.all()
)
return documents return documents
@staticmethod @staticmethod
def get_document_by_dataset_id(dataset_id: str) -> list[Document]: def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, documents = (
db.session.query(Document)
.filter(
Document.dataset_id == dataset_id,
Document.enabled == True, Document.enabled == True,
).all() )
.all()
)
return documents return documents
@staticmethod @staticmethod
def get_working_documents_by_dataset_id(dataset_id: str) -> list[Document]: def get_working_documents_by_dataset_id(dataset_id: str) -> list[Document]:
documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, documents = (
db.session.query(Document)
.filter(
Document.dataset_id == dataset_id,
Document.enabled == True, Document.enabled == True,
Document.indexing_status == "completed", Document.indexing_status == "completed",
Document.archived == False, Document.archived == False,
).all() )
.all()
)
return documents return documents
@ -1097,7 +1112,9 @@ class DocumentService:
BuiltInField.document_name: name, BuiltInField.document_name: name,
BuiltInField.uploader: account.name, BuiltInField.uploader: account.name,
BuiltInField.upload_date: datetime.datetime.now(datetime.timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), BuiltInField.upload_date: datetime.datetime.now(datetime.timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
BuiltInField.last_update_date: datetime.datetime.now(datetime.timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), BuiltInField.last_update_date: datetime.datetime.now(datetime.timezone.utc).strftime(
"%Y-%m-%d %H:%M:%S"
),
BuiltInField.source: data_source_type, BuiltInField.source: data_source_type,
} }
if metadata is not None: if metadata is not None:

View File

@ -130,9 +130,30 @@ class MetadataArgs(BaseModel):
type: Literal["string", "number", "time"] type: Literal["string", "number", "time"]
name: str name: str
class MetadataValue(BaseModel):
class MetadataUpdateArgs(BaseModel):
name: str name: str
value: str value: str
class MetadataValueUpdateArgs(BaseModel): class MetadataValueUpdateArgs(BaseModel):
fields: list[MetadataValue] fields: list[MetadataUpdateArgs]
class MetadataDetail(BaseModel):
id: str
name: str
value: str
class DocumentMetadataOperation(BaseModel):
document_id: str
metadata_list: list[MetadataDetail]
class MetadataOperationData(BaseModel):
"""
Metadata operation data
"""
operation_data: list[DocumentMetadataOperation]

View File

@ -0,0 +1,182 @@
import datetime
from typing import Optional
from flask_login import current_user # type: ignore
from core.rag.index_processor.constant.built_in_field import BuiltInField
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import Dataset, DatasetMetadata, DatasetMetadataBinding
from services.dataset_service import DocumentService
from services.entities.knowledge_entities.knowledge_entities import (
MetadataArgs,
MetadataOperationData,
)
from tasks.update_documents_metadata_task import update_documents_metadata_task
class MetadataService:
@staticmethod
def create_metadata(dataset_id: str, metadata_args: MetadataArgs) -> DatasetMetadata:
metadata = DatasetMetadata(
dataset_id=dataset_id,
type=metadata_args.type,
name=metadata_args.name,
created_by=current_user.id,
)
db.session.add(metadata)
db.session.commit()
return metadata
@staticmethod
def update_metadata_name(dataset_id: str, metadata_id: str, name: str) -> DatasetMetadata:
lock_key = f"dataset_metadata_lock_{dataset_id}"
MetadataService.knowledge_base_metadata_lock_check(dataset_id, None)
metadata = DatasetMetadata.query.filter_by(id=metadata_id).first()
if metadata is None:
raise ValueError("Metadata not found.")
old_name = metadata.name
metadata.name = name
metadata.updated_by = current_user.id
metadata.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
# update related documents
documents = []
dataset_metadata_bindings = DatasetMetadataBinding.query.filter_by(metadata_id=metadata_id).all()
if dataset_metadata_bindings:
document_ids = [binding.document_id for binding in dataset_metadata_bindings]
documents = DocumentService.get_document_by_ids(document_ids)
for document in documents:
document.doc_metadata[name] = document.doc_metadata.pop(old_name)
db.session.add(document)
db.session.commit()
if document_ids:
update_documents_metadata_task.delay(dataset_id, document_ids, lock_key)
return metadata
@staticmethod
def delete_metadata(dataset_id: str, metadata_id: str):
lock_key = f"dataset_metadata_lock_{dataset_id}"
MetadataService.knowledge_base_metadata_lock_check(dataset_id, None)
metadata = DatasetMetadata.query.filter_by(id=metadata_id).first()
if metadata is None:
raise ValueError("Metadata not found.")
db.session.delete(metadata)
# delete related documents
dataset_metadata_bindings = DatasetMetadataBinding.query.filter_by(metadata_id=metadata_id).all()
if dataset_metadata_bindings:
document_ids = [binding.document_id for binding in dataset_metadata_bindings]
documents = DocumentService.get_document_by_ids(document_ids)
for document in documents:
document.doc_metadata.pop(metadata.name)
db.session.add(document)
db.session.commit()
if document_ids:
update_documents_metadata_task.delay(dataset_id, document_ids, lock_key)
@staticmethod
def get_built_in_fields():
return [
{"name": BuiltInField.document_name, "type": "string"},
{"name": BuiltInField.uploader, "type": "string"},
{"name": BuiltInField.upload_date, "type": "date"},
{"name": BuiltInField.last_update_date, "type": "date"},
{"name": BuiltInField.source, "type": "string"},
]
@staticmethod
def enable_built_in_field(dataset: Dataset):
if dataset.built_in_fields:
return
lock_key = f"dataset_metadata_lock_{dataset.id}"
MetadataService.knowledge_base_metadata_lock_check(dataset.id, None)
dataset.built_in_fields = True
db.session.add(dataset)
documents = DocumentService.get_working_documents_by_dataset_id(dataset.id)
document_ids = []
if documents:
for document in documents:
document.doc_metadata[BuiltInField.document_name] = document.name
document.doc_metadata[BuiltInField.uploader] = document.uploader
document.doc_metadata[BuiltInField.upload_date] = document.upload_date.strftime("%Y-%m-%d %H:%M:%S")
document.doc_metadata[BuiltInField.last_update_date] = document.last_update_date.strftime(
"%Y-%m-%d %H:%M:%S"
)
document.doc_metadata[BuiltInField.source] = document.data_source_type
db.session.add(document)
document_ids.append(document.id)
db.session.commit()
if document_ids:
update_documents_metadata_task.delay(dataset.id, document_ids, lock_key)
@staticmethod
def disable_built_in_field(dataset: Dataset):
if not dataset.built_in_fields:
return
lock_key = f"dataset_metadata_lock_{dataset.id}"
MetadataService.knowledge_base_metadata_lock_check(dataset.id, None)
dataset.built_in_fields = False
db.session.add(dataset)
documents = DocumentService.get_working_documents_by_dataset_id(dataset.id)
document_ids = []
if documents:
for document in documents:
document.doc_metadata.pop(BuiltInField.document_name)
document.doc_metadata.pop(BuiltInField.uploader)
document.doc_metadata.pop(BuiltInField.upload_date)
document.doc_metadata.pop(BuiltInField.last_update_date)
document.doc_metadata.pop(BuiltInField.source)
db.session.add(document)
document_ids.append(document.id)
db.session.commit()
if document_ids:
update_documents_metadata_task.delay(dataset.id, document_ids, lock_key)
@staticmethod
def update_documents_metadata(dataset: Dataset, metadata_args: MetadataOperationData):
for operation in metadata_args.operation_data:
lock_key = f"document_metadata_lock_{operation.document_id}"
MetadataService.knowledge_base_metadata_lock_check(None, operation.document_id)
document = DocumentService.get_document(operation.document_id)
if document is None:
raise ValueError("Document not found.")
document.doc_metadata = {}
for metadata_value in metadata_args.fields:
document.doc_metadata[metadata_value.name] = metadata_value.value
if dataset.built_in_fields:
document.doc_metadata[BuiltInField.document_name] = document.name
document.doc_metadata[BuiltInField.uploader] = document.uploader
document.doc_metadata[BuiltInField.upload_date] = document.upload_date.strftime("%Y-%m-%d %H:%M:%S")
document.doc_metadata[BuiltInField.last_update_date] = document.last_update_date.strftime(
"%Y-%m-%d %H:%M:%S"
)
document.doc_metadata[BuiltInField.source] = document.data_source_type
# deal metadata bindding
DatasetMetadataBinding.query.filter_by(document_id=operation.document_id).delete()
for metadata_value in operation.metadata_list:
dataset_metadata_binding = DatasetMetadataBinding(
tenant_id=current_user.tenant_id,
dataset_id=dataset.id,
document_id=operation.document_id,
metadata_id=metadata_value.id,
created_by=current_user.id,
)
db.session.add(dataset_metadata_binding)
db.session.add(document)
db.session.commit()
update_documents_metadata_task.delay(dataset.id, [document.id], lock_key)
@staticmethod
def knowledge_base_metadata_lock_check(dataset_id: Optional[str], document_id: Optional[str]):
if dataset_id:
lock_key = f"dataset_metadata_lock_{dataset_id}"
if redis_client.get(lock_key):
raise ValueError("Another knowledge base metadata operation is running, please wait a moment.")
redis_client.set(lock_key, 1, ex=3600)
if document_id:
lock_key = f"document_metadata_lock_{document_id}"
if redis_client.get(lock_key):
raise ValueError("Another document metadata operation is running, please wait a moment.")
redis_client.set(lock_key, 1, ex=3600)

View File

@ -0,0 +1,121 @@
import logging
import time
from typing import Optional
import click
from celery import shared_task # type: ignoreq
from core.rag.index_processor.constant.built_in_field import BuiltInField
from core.rag.index_processor.constant.index_type import IndexType
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
from core.rag.models.document import ChildDocument, Document
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import (
Document as DatasetDocument,
)
from models.dataset import (
DocumentSegment,
)
from services.dataset_service import DatasetService
@shared_task(queue="dataset")
def update_documents_metadata_task(
dataset_id: str,
document_ids: list[str],
lock_key: Optional[str] = None,
):
"""
Update documents metadata.
:param dataset_id: dataset id
:param document_ids: document ids
Usage: update_documents_metadata_task.delay(dataset_id, document_ids)
"""
logging.info(click.style("Start update documents metadata: {}".format(dataset_id), fg="green"))
start_at = time.perf_counter()
try:
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise ValueError("Dataset not found.")
documents = (
db.session.query(DatasetDocument)
.filter(
DatasetDocument.dataset_id == dataset_id,
DatasetDocument.id.in_(document_ids),
DatasetDocument.enabled == True,
DatasetDocument.indexing_status == "completed",
DatasetDocument.archived == False,
)
.all()
)
if not documents:
raise ValueError("Documents not found.")
for dataset_document in documents:
index_processor = IndexProcessorFactory(dataset_document.doc_form).init_index_processor()
segments = (
db.session.query(DocumentSegment)
.filter(
DocumentSegment.dataset_id == dataset_id,
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.enabled == True,
)
.all()
)
if not segments:
continue
# delete all documents in vector index
index_node_ids = [segment.index_node_id for segment in segments]
index_processor.clean(dataset, index_node_ids, with_keywords=False, delete_child_chunks=True)
# update documents metadata
documents = []
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": dataset_document.id,
"dataset_id": dataset_id,
},
)
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
child_chunks = segment.child_chunks
if child_chunks:
child_documents = []
for child_chunk in child_chunks:
child_document = ChildDocument(
page_content=child_chunk.content,
metadata={
"doc_id": child_chunk.index_node_id,
"doc_hash": child_chunk.index_node_hash,
"document_id": dataset_document.id,
"dataset_id": dataset_id,
},
)
if dataset.built_in_field_enabled:
child_document.metadata[BuiltInField.uploader] = dataset_document.created_by
child_document.metadata[BuiltInField.upload_date] = dataset_document.created_at
child_document.metadata[BuiltInField.last_update_date] = dataset_document.updated_at
child_document.metadata[BuiltInField.source] = dataset_document.data_source_type
child_document.metadata[BuiltInField.original_filename] = dataset_document.name
if dataset_document.doc_metadata:
child_document.metadata.update(dataset_document.doc_metadata)
child_documents.append(child_document)
document.children = child_documents
documents.append(document) # noqa: B909
# save vector index
index_processor.load(dataset, documents)
end_at = time.perf_counter()
logging.info(
click.style("Updated documents metadata: {} latency: {}".format(dataset_id, end_at - start_at), fg="green")
)
except Exception:
logging.exception("Updated documents metadata failed")
finally:
if lock_key:
redis_client.delete(lock_key)