update text spliter

This commit is contained in:
jyong 2024-11-26 18:35:30 +08:00
parent e3f5ac236c
commit 9ca453f7f7
5 changed files with 19 additions and 20 deletions

View File

@ -720,10 +720,8 @@ class IndexingRunner:
tokens = 0 tokens = 0
if embedding_model_instance: if embedding_model_instance:
tokens += sum( page_content_list = [document.page_content for document in chunk_documents]
embedding_model_instance.get_text_embedding_num_tokens([document.page_content]) tokens += sum(embedding_model_instance.get_text_embedding_num_tokens(page_content_list))
for document in chunk_documents
)
# load index # load index
index_processor.load(dataset, chunk_documents, with_keywords=False) index_processor.load(dataset, chunk_documents, with_keywords=False)

View File

@ -183,7 +183,7 @@ class ModelInstance:
input_type=input_type, input_type=input_type,
) )
def get_text_embedding_num_tokens(self, texts: list[str]) -> int: def get_text_embedding_num_tokens(self, texts: list[str]) -> list[int]:
""" """
Get number of tokens for text embedding Get number of tokens for text embedding

View File

@ -78,8 +78,13 @@ class DatasetDocumentStore:
model_type=ModelType.TEXT_EMBEDDING, model_type=ModelType.TEXT_EMBEDDING,
model=self._dataset.embedding_model, model=self._dataset.embedding_model,
) )
if embedding_model:
page_content_list = [doc.page_content for doc in docs]
tokens_list = embedding_model.get_text_embedding_num_tokens(page_content_list)
else:
tokens_list = [0] * len(docs)
for doc in docs: for doc, tokens in zip(docs, tokens_list):
if not isinstance(doc, Document): if not isinstance(doc, Document):
raise ValueError("doc must be a Document") raise ValueError("doc must be a Document")
@ -91,12 +96,6 @@ class DatasetDocumentStore:
f"doc_id {doc.metadata['doc_id']} already exists. Set allow_update to True to overwrite." f"doc_id {doc.metadata['doc_id']} already exists. Set allow_update to True to overwrite."
) )
# calc embedding use tokens
if embedding_model:
tokens = embedding_model.get_text_embedding_num_tokens(texts=[doc.page_content])
else:
tokens = 0
if not segment_document: if not segment_document:
max_position += 1 max_position += 1

View File

@ -1390,7 +1390,7 @@ class SegmentService:
model=dataset.embedding_model, model=dataset.embedding_model,
) )
# calc embedding use tokens # calc embedding use tokens
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
lock_name = "add_segment_lock_document_id_{}".format(document.id) lock_name = "add_segment_lock_document_id_{}".format(document.id)
with redis_client.lock(lock_name, timeout=600): with redis_client.lock(lock_name, timeout=600):
max_position = ( max_position = (
@ -1467,9 +1467,9 @@ class SegmentService:
if dataset.indexing_technique == "high_quality" and embedding_model: if dataset.indexing_technique == "high_quality" and embedding_model:
# calc embedding use tokens # calc embedding use tokens
if document.doc_form == "qa_model": if document.doc_form == "qa_model":
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment_item["answer"]]) tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment_item["answer"]])[0]
else: else:
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
segment_document = DocumentSegment( segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id, tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id, dataset_id=document.dataset_id,
@ -1577,9 +1577,9 @@ class SegmentService:
# calc embedding use tokens # calc embedding use tokens
if document.doc_form == "qa_model": if document.doc_form == "qa_model":
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment.answer]) tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment.answer])[0]
else: else:
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
segment.content = content segment.content = content
segment.index_node_hash = segment_hash segment.index_node_hash = segment_hash
segment.word_count = len(content) segment.word_count = len(content)

View File

@ -58,12 +58,14 @@ def batch_create_segment_to_index_task(
model=dataset.embedding_model, model=dataset.embedding_model,
) )
word_count_change = 0 word_count_change = 0
for segment in content: if embedding_model:
tokens_list = embedding_model.get_text_embedding_num_tokens(texts=[segment["content"] for segment in content])
else:
tokens_list = [0] * len(content)
for segment, tokens in zip(content, tokens_list):
content = segment["content"] content = segment["content"]
doc_id = str(uuid.uuid4()) doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content) segment_hash = helper.generate_text_hash(content)
# calc embedding use tokens
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) if embedding_model else 0
max_position = ( max_position = (
db.session.query(func.max(DocumentSegment.position)) db.session.query(func.max(DocumentSegment.position))
.filter(DocumentSegment.document_id == dataset_document.id) .filter(DocumentSegment.document_id == dataset_document.id)