dataset metadata fix
This commit is contained in:
parent
c53786d229
commit
9e258c495d
@ -617,7 +617,7 @@ class DocumentDetailApi(DocumentResource):
|
||||
raise InvalidMetadataError(f"Invalid metadata value: {metadata}")
|
||||
|
||||
if metadata == "only":
|
||||
response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata}
|
||||
response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata_details}
|
||||
elif metadata == "without":
|
||||
dataset_process_rules = DatasetService.get_process_rules(dataset_id)
|
||||
document_process_rules = document.dataset_process_rule.to_dict()
|
||||
@ -678,7 +678,7 @@ class DocumentDetailApi(DocumentResource):
|
||||
"disabled_by": document.disabled_by,
|
||||
"archived": document.archived,
|
||||
"doc_type": document.doc_type,
|
||||
"doc_metadata": document.doc_metadata,
|
||||
"doc_metadata": document.doc_metadata_details,
|
||||
"segment_count": document.segment_count,
|
||||
"average_segment_length": document.average_segment_length,
|
||||
"hit_count": document.hit_count,
|
||||
|
||||
@ -197,8 +197,8 @@ class AnalyticdbVectorBySql:
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
where_clause = "WHERE 1=1"
|
||||
if document_ids_filter:
|
||||
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause += f"AND metadata_->>'doc_id' IN ({doc_ids})"
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause += f"AND metadata_->>'document_id' IN ({document_ids})"
|
||||
score_threshold = float(kwargs.get("score_threshold") or 0.0)
|
||||
with self._get_cursor() as cur:
|
||||
query_vector_str = json.dumps(query_vector)
|
||||
@ -228,8 +228,8 @@ class AnalyticdbVectorBySql:
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
where_clause = ""
|
||||
if document_ids_filter:
|
||||
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause += f"AND metadata_->>'doc_id' IN ({doc_ids})"
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause += f"AND metadata_->>'document_id' IN ({document_ids})"
|
||||
with self._get_cursor() as cur:
|
||||
cur.execute(
|
||||
f"""SELECT id, vector, page_content, metadata_,
|
||||
|
||||
@ -125,12 +125,12 @@ class BaiduVector(BaseVector):
|
||||
query_vector = [float(val) if isinstance(val, np.float64) else val for val in query_vector]
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
if document_ids_filter:
|
||||
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
anns = AnnSearch(
|
||||
vector_field=self.field_vector,
|
||||
vector_floats=query_vector,
|
||||
params=HNSWSearchParams(ef=kwargs.get("ef", 10), limit=kwargs.get("top_k", 4)),
|
||||
filter=f"doc_id IN ({doc_ids})",
|
||||
filter=f"document_id IN ({document_ids})",
|
||||
)
|
||||
else:
|
||||
anns = AnnSearch(
|
||||
|
||||
@ -100,7 +100,7 @@ class ChromaVector(BaseVector):
|
||||
results: QueryResult = collection.query(
|
||||
query_embeddings=query_vector,
|
||||
n_results=kwargs.get("top_k", 4),
|
||||
where={"doc_id": {"$in": document_ids_filter}},
|
||||
where={"document_id": {"$in": document_ids_filter}},
|
||||
)
|
||||
else:
|
||||
results: QueryResult = collection.query(query_embeddings=query_vector, n_results=kwargs.get("top_k", 4))
|
||||
|
||||
@ -119,7 +119,7 @@ class ElasticSearchVector(BaseVector):
|
||||
knn = {"field": Field.VECTOR.value, "query_vector": query_vector, "k": top_k, "num_candidates": num_candidates}
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
if document_ids_filter:
|
||||
knn["filter"] = {"terms": {"metadata.doc_id": document_ids_filter}}
|
||||
knn["filter"] = {"terms": {"metadata.document_id": document_ids_filter}}
|
||||
|
||||
results = self._client.search(index=self._collection_name, knn=knn, size=top_k)
|
||||
|
||||
@ -150,7 +150,7 @@ class ElasticSearchVector(BaseVector):
|
||||
query_str = {"match": {Field.CONTENT_KEY.value: query}}
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
if document_ids_filter:
|
||||
query_str["filter"] = {"terms": {"metadata.doc_id": document_ids_filter}}
|
||||
query_str["filter"] = {"terms": {"metadata.document_id": document_ids_filter}}
|
||||
results = self._client.search(index=self._collection_name, query=query_str, size=kwargs.get("top_k", 4))
|
||||
docs = []
|
||||
for hit in results["hits"]["hits"]:
|
||||
|
||||
@ -171,7 +171,7 @@ class LindormVectorStore(BaseVector):
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
filters = []
|
||||
if document_ids_filter:
|
||||
filters.append({"terms": {"metadata.doc_id": document_ids_filter}})
|
||||
filters.append({"terms": {"metadata.document_id": document_ids_filter}})
|
||||
query = default_vector_search_query(query_vector=query_vector, k=top_k, filters=filters, **kwargs)
|
||||
|
||||
try:
|
||||
@ -214,7 +214,7 @@ class LindormVectorStore(BaseVector):
|
||||
filters = kwargs.get("filter", [])
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
if document_ids_filter:
|
||||
filters.append({"terms": {"metadata.doc_id": document_ids_filter}})
|
||||
filters.append({"terms": {"metadata.document_id": document_ids_filter}})
|
||||
routing = self._routing
|
||||
full_text_query = default_text_search_query(
|
||||
query_text=query,
|
||||
|
||||
@ -221,8 +221,8 @@ class MilvusVector(BaseVector):
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
filter = ""
|
||||
if document_ids_filter:
|
||||
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
filter = f'metadata["doc_id"] in ({doc_ids})'
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
filter = f'metadata["document_id"] in ({document_ids})'
|
||||
results = self._client.search(
|
||||
collection_name=self._collection_name,
|
||||
data=[query_vector],
|
||||
@ -248,8 +248,8 @@ class MilvusVector(BaseVector):
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
filter = ""
|
||||
if document_ids_filter:
|
||||
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
filter = f'metadata["doc_id"] in ({doc_ids})'
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
filter = f'metadata["document_id"] in ({document_ids})'
|
||||
|
||||
results = self._client.search(
|
||||
collection_name=self._collection_name,
|
||||
|
||||
@ -133,8 +133,8 @@ class MyScaleVector(BaseVector):
|
||||
)
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
if document_ids_filter:
|
||||
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_str = f"{where_str} AND metadata['doc_id'] in ({doc_ids})"
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_str = f"{where_str} AND metadata['document_id'] in ({document_ids})"
|
||||
sql = f"""
|
||||
SELECT text, vector, metadata, {dist} as dist FROM {self._config.database}.{self._collection_name}
|
||||
{where_str} ORDER BY dist {order.value} LIMIT {top_k}
|
||||
|
||||
@ -157,8 +157,8 @@ class OceanBaseVector(BaseVector):
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
where_clause = None
|
||||
if document_ids_filter:
|
||||
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f"metadata->>'$.doc_id' in ({doc_ids})"
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f"metadata->>'$.document_id' in ({document_ids})"
|
||||
ef_search = kwargs.get("ef_search", self._hnsw_ef_search)
|
||||
if ef_search != self._hnsw_ef_search:
|
||||
self._client.set_ob_hnsw_ef_search(ef_search)
|
||||
|
||||
@ -156,7 +156,7 @@ class OpenSearchVector(BaseVector):
|
||||
}
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
if document_ids_filter:
|
||||
query["query"] = {"terms": {"metadata.doc_id": document_ids_filter}}
|
||||
query["query"] = {"terms": {"metadata.document_id": document_ids_filter}}
|
||||
|
||||
try:
|
||||
response = self._client.search(index=self._collection_name.lower(), body=query)
|
||||
@ -184,7 +184,7 @@ class OpenSearchVector(BaseVector):
|
||||
full_text_query = {"query": {"match": {Field.CONTENT_KEY.value: query}}}
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
if document_ids_filter:
|
||||
full_text_query["query"]["terms"] = {"metadata.doc_id": document_ids_filter}
|
||||
full_text_query["query"]["terms"] = {"metadata.document_id": document_ids_filter}
|
||||
|
||||
response = self._client.search(index=self._collection_name.lower(), body=full_text_query)
|
||||
|
||||
|
||||
@ -188,8 +188,8 @@ class OracleVector(BaseVector):
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
where_clause = ""
|
||||
if document_ids_filter:
|
||||
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f"WHERE metadata->>'doc_id' in ({doc_ids})"
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f"WHERE metadata->>'document_id' in ({document_ids})"
|
||||
with self._get_cursor() as cur:
|
||||
cur.execute(
|
||||
f"SELECT meta, text, vector_distance(embedding,:1) AS distance FROM {self.table_name}"
|
||||
@ -249,8 +249,8 @@ class OracleVector(BaseVector):
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
where_clause = ""
|
||||
if document_ids_filter:
|
||||
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f" AND metadata->>'doc_id' in ({doc_ids}) "
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f" AND metadata->>'document_id' in ({document_ids}) "
|
||||
cur.execute(
|
||||
f"select meta, text, embedding FROM {self.table_name}"
|
||||
f"WHERE CONTAINS(text, :1, 1) > 0 {where_clause} "
|
||||
|
||||
@ -191,7 +191,7 @@ class PGVectoRS(BaseVector):
|
||||
)
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
if document_ids_filter:
|
||||
stmt = stmt.where(self._table.meta["doc_id"].in_(document_ids_filter))
|
||||
stmt = stmt.where(self._table.meta["document_id"].in_(document_ids_filter))
|
||||
res = session.execute(stmt)
|
||||
results = [(row[0], row[1]) for row in res]
|
||||
|
||||
|
||||
@ -158,8 +158,8 @@ class PGVector(BaseVector):
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
where_clause = ""
|
||||
if document_ids_filter:
|
||||
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f" WHERE metadata->>'doc_id' in ({doc_ids}) "
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f" WHERE metadata->>'document_id' in ({document_ids}) "
|
||||
|
||||
with self._get_cursor() as cur:
|
||||
cur.execute(
|
||||
@ -185,8 +185,8 @@ class PGVector(BaseVector):
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
where_clause = ""
|
||||
if document_ids_filter:
|
||||
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f" AND metadata->>'doc_id' in ({doc_ids}) "
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f" AND metadata->>'document_id' in ({document_ids}) "
|
||||
cur.execute(
|
||||
f"""SELECT meta, text, ts_rank(to_tsvector(coalesce(text, '')), plainto_tsquery(%s)) AS score
|
||||
FROM {self.table_name}
|
||||
|
||||
@ -334,7 +334,7 @@ class QdrantVector(BaseVector):
|
||||
if document_ids_filter:
|
||||
filter.must.append(
|
||||
models.FieldCondition(
|
||||
key="metadata.doc_id",
|
||||
key="metadata.document_id",
|
||||
match=models.MatchAny(any=document_ids_filter),
|
||||
)
|
||||
)
|
||||
@ -388,7 +388,7 @@ class QdrantVector(BaseVector):
|
||||
if document_ids_filter:
|
||||
scroll_filter.must.append(
|
||||
models.FieldCondition(
|
||||
key="metadata.doc_id",
|
||||
key="metadata.document_id",
|
||||
match=models.MatchAny(any=document_ids_filter),
|
||||
)
|
||||
)
|
||||
|
||||
@ -226,7 +226,7 @@ class RelytVector(BaseVector):
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
filter = kwargs.get("filter", {})
|
||||
if document_ids_filter:
|
||||
filter["doc_id"] = document_ids_filter
|
||||
filter["document_id"] = document_ids_filter
|
||||
results = self.similarity_search_with_score_by_vector(
|
||||
k=int(kwargs.get("top_k", 4)), embedding=query_vector, filter=filter
|
||||
)
|
||||
|
||||
@ -151,7 +151,7 @@ class TencentVector(BaseVector):
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
filter = None
|
||||
if document_ids_filter:
|
||||
filter = Filter(Filter.In("metadata.doc_id", document_ids_filter))
|
||||
filter = Filter(Filter.In("metadata.document_id", document_ids_filter))
|
||||
res = self._db.collection(self._collection_name).search(
|
||||
vectors=[query_vector],
|
||||
filter=filter,
|
||||
|
||||
@ -330,7 +330,7 @@ class TidbOnQdrantVector(BaseVector):
|
||||
if document_ids_filter:
|
||||
filter.must.append(
|
||||
models.FieldCondition(
|
||||
key="metadata.doc_id",
|
||||
key="metadata.document_id",
|
||||
match=models.MatchAny(any=document_ids_filter),
|
||||
)
|
||||
)
|
||||
@ -380,7 +380,7 @@ class TidbOnQdrantVector(BaseVector):
|
||||
if document_ids_filter:
|
||||
scroll_filter.must.append(
|
||||
models.FieldCondition(
|
||||
key="metadata.doc_id",
|
||||
key="metadata.document_id",
|
||||
match=models.MatchAny(any=document_ids_filter),
|
||||
)
|
||||
)
|
||||
|
||||
@ -199,8 +199,8 @@ class TiDBVector(BaseVector):
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
where_clause = ""
|
||||
if document_ids_filter:
|
||||
doc_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f" WHERE meta->>'$.doc_id' in ({doc_ids}) "
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f" WHERE meta->>'$.document_id' in ({document_ids}) "
|
||||
|
||||
with Session(self._engine) as session:
|
||||
select_statement = sql_text(f"""
|
||||
|
||||
@ -90,7 +90,8 @@ class UpstashVector(BaseVector):
|
||||
top_k = kwargs.get("top_k", 4)
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
if document_ids_filter:
|
||||
filter = f"doc_id in ({', '.join(f"'{id}'" for id in document_ids_filter)})"
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
filter = f"document_id in ({document_ids})"
|
||||
else:
|
||||
filter = ""
|
||||
result = self.index.query(
|
||||
|
||||
@ -180,7 +180,7 @@ class VikingDBVector(BaseVector):
|
||||
docs = self._get_search_res(results, score_threshold)
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
if document_ids_filter:
|
||||
docs = [doc for doc in docs if doc.metadata.get("doc_id") in document_ids_filter]
|
||||
docs = [doc for doc in docs if doc.metadata.get("document_id") in document_ids_filter]
|
||||
return docs
|
||||
|
||||
def _get_search_res(self, results, score_threshold) -> list[Document]:
|
||||
|
||||
@ -189,7 +189,7 @@ class WeaviateVector(BaseVector):
|
||||
vector = {"vector": query_vector}
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
if document_ids_filter:
|
||||
where_filter = {"operator": "ContainsAny", "path": ["doc_id"], "valueTextArray": document_ids_filter}
|
||||
where_filter = {"operator": "ContainsAny", "path": ["document_id"], "valueTextArray": document_ids_filter}
|
||||
query_obj = query_obj.with_where(where_filter)
|
||||
result = (
|
||||
query_obj.with_near_vector(vector)
|
||||
@ -237,7 +237,7 @@ class WeaviateVector(BaseVector):
|
||||
query_obj = self._client.query.get(collection_name, properties)
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
if document_ids_filter:
|
||||
where_filter = {"operator": "ContainsAny", "path": ["doc_id"], "valueTextArray": document_ids_filter}
|
||||
where_filter = {"operator": "ContainsAny", "path": ["document_id"], "valueTextArray": document_ids_filter}
|
||||
query_obj = query_obj.with_where(where_filter)
|
||||
query_obj = query_obj.with_additional(["vector"])
|
||||
properties = ["text"]
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user