diff --git a/Dockerfile b/Dockerfile index 3e316e87..c8f3e7f0 100644 --- a/Dockerfile +++ b/Dockerfile @@ -34,9 +34,15 @@ RUN --mount=type=bind,from=infiniflow/ragflow_deps:latest,source=/,target=/deps cp /deps/cl100k_base.tiktoken /ragflow/9b5ad71b2ce5302211f9c61530b329a4922fc6a4 ENV TIKA_SERVER_JAR="file:///ragflow/tika-server-standard-3.0.0.jar" +ENV DEBIAN_FRONTEND=noninteractive # Setup apt -# cv2 requires libGL.so.1 +# Python package and implicit dependencies: +# opencv-python: libglib2.0-0 libglx-mesa0 libgl1 +# aspose-slides: pkg-config libicu-dev libgdiplus libssl1.1_1.1.1f-1ubuntu2_amd64.deb +# python-pptx: default-jdk tika-server-standard-3.0.0.jar +# selenium: libatk-bridge2.0-0 chrome-linux64-121-0-6167-85 +# Building C extensions: libpython3-dev libgtk-4-1 libnss3 xdg-utils libgbm-dev RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \ if [ "$NEED_MIRROR" == "1" ]; then \ sed -i 's|http://archive.ubuntu.com|https://mirrors.tuna.tsinghua.edu.cn|g' /etc/apt/sources.list; \ @@ -47,8 +53,12 @@ RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \ apt update && \ apt --no-install-recommends install -y ca-certificates && \ apt update && \ - DEBIAN_FRONTEND=noninteractive apt install -y curl libpython3-dev nginx libglib2.0-0 libglx-mesa0 pkg-config libicu-dev libgdiplus default-jdk python3-pip pipx \ - libatk-bridge2.0-0 libgtk-4-1 libnss3 xdg-utils unzip libgbm-dev wget git nginx libgl1 vim less + apt install -y libglib2.0-0 libglx-mesa0 libgl1 && \ + apt install -y pkg-config libicu-dev libgdiplus && \ + apt install -y default-jdk && \ + apt install -y libatk-bridge2.0-0 && \ + apt install -y libpython3-dev libgtk-4-1 libnss3 xdg-utils libgbm-dev && \ + apt install -y python3-pip pipx nginx unzip curl wget git vim less RUN if [ "$NEED_MIRROR" == "1" ]; then \ pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple && \ diff --git a/api/apps/chunk_app.py b/api/apps/chunk_app.py index d60483ad..6dc1f9b6 100644 --- a/api/apps/chunk_app.py +++ b/api/apps/chunk_app.py @@ -71,7 +71,7 @@ def list_chunk(): "question_kwd": sres.field[id].get("question_kwd", []), "image_id": sres.field[id].get("img_id", ""), "available_int": int(sres.field[id].get("available_int", 1)), - "positions": json.loads(sres.field[id].get("position_list", "[]")), + "positions": sres.field[id].get("position_int", []), } assert isinstance(d["positions"], list) assert len(d["positions"]) == 0 or (isinstance(d["positions"][0], list) and len(d["positions"][0]) == 5) diff --git a/api/apps/sdk/doc.py b/api/apps/sdk/doc.py index 6bcbe58e..7fa64584 100644 --- a/api/apps/sdk/doc.py +++ b/api/apps/sdk/doc.py @@ -846,7 +846,7 @@ def list_chunks(tenant_id, dataset_id, document_id): "question_kwd": sres.field[id].get("question_kwd", []), "img_id": sres.field[id].get("img_id", ""), "available_int": sres.field[id].get("available_int", 1), - "positions": sres.field[id].get("position_int", "").split("\t"), + "positions": sres.field[id].get("position_int", []), } if len(d["positions"]) % 5 == 0: poss = [] diff --git a/conf/infinity_mapping.json b/conf/infinity_mapping.json index a9d1d4f0..118f205f 100644 --- a/conf/infinity_mapping.json +++ b/conf/infinity_mapping.json @@ -16,9 +16,9 @@ "content_with_weight": {"type": "varchar", "default": ""}, "content_ltks": {"type": "varchar", "default": ""}, "content_sm_ltks": {"type": "varchar", "default": ""}, - "page_num_list": {"type": "varchar", "default": ""}, - "top_list": {"type": "varchar", "default": ""}, - "position_list": {"type": "varchar", "default": ""}, + "page_num_int": {"type": "varchar", "default": ""}, + "top_int": {"type": "varchar", "default": ""}, + "position_int": {"type": "varchar", "default": ""}, "weight_int": {"type": "integer", "default": 0}, "weight_flt": {"type": "float", "default": 0.0}, "rank_int": {"type": "integer", "default": 0}, diff --git a/graphrag/search.py b/graphrag/search.py index 4e9f4448..a803494b 100644 --- a/graphrag/search.py +++ b/graphrag/search.py @@ -58,7 +58,7 @@ class KGSearch(Dealer): matchDense = self.get_vector(qst, emb_mdl, 1024, req.get("similarity", 0.1)) q_vec = matchDense.embedding_data src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd", - "doc_id", f"q_{len(q_vec)}_vec", "position_list", "name_kwd", + "doc_id", f"q_{len(q_vec)}_vec", "position_int", "name_kwd", "available_int", "content_with_weight", "weight_int", "weight_flt" ]) diff --git a/rag/app/presentation.py b/rag/app/presentation.py index bebf64bf..a3305bdc 100644 --- a/rag/app/presentation.py +++ b/rag/app/presentation.py @@ -20,7 +20,6 @@ from rag.nlp import tokenize, is_english from rag.nlp import rag_tokenizer from deepdoc.parser import PdfParser, PptParser, PlainParser from PyPDF2 import PdfReader as pdf2_read -import json class Ppt(PptParser): @@ -109,9 +108,9 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, d = copy.deepcopy(doc) pn += from_page d["image"] = img - d["page_num_list"] = json.dumps([pn + 1]) - d["top_list"] = json.dumps([0]) - d["position_list"] = json.dumps([(pn + 1, 0, img.size[0], 0, img.size[1])]) + d["page_num_int"] = [pn + 1] + d["top_int"] = [0] + d["position_int"] = [(pn + 1, 0, img.size[0], 0, img.size[1])] tokenize(d, txt, eng) res.append(d) return res @@ -125,10 +124,9 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, pn += from_page if img: d["image"] = img - d["page_num_list"] = json.dumps([pn + 1]) - d["top_list"] = json.dumps([0]) - d["position_list"] = json.dumps([ - (pn + 1, 0, img.size[0] if img else 0, 0, img.size[1] if img else 0)]) + d["page_num_int"] = [pn + 1] + d["top_int"] = [0] + d["position_int"] = [(pn + 1, 0, img.size[0] if img else 0, 0, img.size[1] if img else 0)] tokenize(d, txt, eng) res.append(d) return res diff --git a/rag/nlp/__init__.py b/rag/nlp/__init__.py index 69573375..2aaf98aa 100644 --- a/rag/nlp/__init__.py +++ b/rag/nlp/__init__.py @@ -22,7 +22,6 @@ from rag.utils import num_tokens_from_string from . import rag_tokenizer import re import copy -import json import roman_numbers as r from word2number import w2n from cn2an import cn2an @@ -311,16 +310,16 @@ def tokenize_table(tbls, doc, eng, batch_size=10): def add_positions(d, poss): if not poss: return - page_num_list = [] - position_list = [] - top_list = [] + page_num_int = [] + position_int = [] + top_int = [] for pn, left, right, top, bottom in poss: - page_num_list.append(int(pn + 1)) - top_list.append(int(top)) - position_list.append((int(pn + 1), int(left), int(right), int(top), int(bottom))) - d["page_num_list"] = json.dumps(page_num_list) - d["position_list"] = json.dumps(position_list) - d["top_list"] = json.dumps(top_list) + page_num_int.append(int(pn + 1)) + top_int.append(int(top)) + position_int.append((int(pn + 1), int(left), int(right), int(top), int(bottom))) + d["page_num_int"] = page_num_int + d["position_int"] = position_int + d["top_int"] = top_int def remove_contents_table(sections, eng=False): diff --git a/rag/nlp/search.py b/rag/nlp/search.py index c8de4df0..9f877ef4 100644 --- a/rag/nlp/search.py +++ b/rag/nlp/search.py @@ -16,7 +16,6 @@ import logging import re -import json from dataclasses import dataclass from rag.utils import rmSpace @@ -74,7 +73,7 @@ class Dealer: offset, limit = pg * ps, (pg + 1) * ps src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd", - "doc_id", "position_list", "knowledge_graph_kwd", "question_kwd", "question_tks", + "doc_id", "page_num_int", "top_int", "create_timestamp_flt", "knowledge_graph_kwd", "question_kwd", "question_tks", "available_int", "content_with_weight", "pagerank_fea"]) kwds = set([]) @@ -82,6 +81,8 @@ class Dealer: q_vec = [] if not qst: if req.get("sort"): + orderBy.asc("page_num_int") + orderBy.asc("top_int") orderBy.desc("create_timestamp_flt") res = self.dataStore.search(src, [], filters, [], orderBy, offset, limit, idx_names, kb_ids) total=self.dataStore.getTotal(res) @@ -340,7 +341,7 @@ class Dealer: chunk = sres.field[id] dnm = chunk["docnm_kwd"] did = chunk["doc_id"] - position_list = chunk.get("position_list", "[]") + position_int = chunk.get("position_int", []) d = { "chunk_id": id, "content_ltks": chunk["content_ltks"], @@ -354,7 +355,7 @@ class Dealer: "vector_similarity": vsim[i], "term_similarity": tsim[i], "vector": chunk.get(vector_column, zero_vector), - "positions": json.loads(position_list) + "positions": position_int, } if highlight and sres.highlight: if id in sres.highlight: diff --git a/rag/svr/task_executor.py b/rag/svr/task_executor.py index 606bb075..902c1e31 100644 --- a/rag/svr/task_executor.py +++ b/rag/svr/task_executor.py @@ -211,9 +211,9 @@ def build_chunks(task, progress_callback): if not d.get("image"): _ = d.pop("image", None) d["img_id"] = "" - d["page_num_list"] = json.dumps([]) - d["position_list"] = json.dumps([]) - d["top_list"] = json.dumps([]) + d["page_num_int"] = [] + d["position_int"] = [] + d["top_int"] = [] docs.append(d) continue diff --git a/rag/utils/es_conn.py b/rag/utils/es_conn.py index a473833f..35d64286 100644 --- a/rag/utils/es_conn.py +++ b/rag/utils/es_conn.py @@ -185,8 +185,14 @@ class ESConnection(DocStoreConnection): orders = list() for field, order in orderBy.fields: order = "asc" if order == 0 else "desc" - orders.append({field: {"order": order, "unmapped_type": "float", - "mode": "avg", "numeric_type": "double"}}) + if field in ["page_num_int", "top_int"]: + order_info = {"order": order, "unmapped_type": "float", + "mode": "avg", "numeric_type": "double"} + elif field.endswith("_int") or field.endswith("_flt"): + order_info = {"order": order, "unmapped_type": "float"} + else: + order_info = {"order": order, "unmapped_type": "text"} + orders.append({field: order_info}) s = s.sort(*orders) if limit > 0: diff --git a/rag/utils/infinity_conn.py b/rag/utils/infinity_conn.py index 5c0e2ef6..227c0bc6 100644 --- a/rag/utils/infinity_conn.py +++ b/rag/utils/infinity_conn.py @@ -297,7 +297,7 @@ class InfinityConnection(DocStoreConnection): df_list.append(kb_res) self.connPool.release_conn(inf_conn) res = concat_dataframes(df_list, selectFields) - logger.debug("INFINITY search tables: " + str(table_list)) + logger.debug(f"INFINITY search tables: {str(table_list)}, result: {str(res)}") return res def get( @@ -307,8 +307,10 @@ class InfinityConnection(DocStoreConnection): db_instance = inf_conn.get_database(self.dbName) df_list = list() assert isinstance(knowledgebaseIds, list) + table_list = list() for knowledgebaseId in knowledgebaseIds: table_name = f"{indexName}_{knowledgebaseId}" + table_list.append(table_name) table_instance = db_instance.get_table(table_name) kb_res = table_instance.output(["*"]).filter(f"id = '{chunkId}'").to_pl() if len(kb_res) != 0 and kb_res.shape[0] > 0: @@ -316,6 +318,7 @@ class InfinityConnection(DocStoreConnection): self.connPool.release_conn(inf_conn) res = concat_dataframes(df_list, ["id"]) + logger.debug(f"INFINITY get tables: {str(table_list)}, result: {str(res)}") res_fields = self.getFields(res, res.columns) return res_fields.get(chunkId, None) @@ -349,15 +352,22 @@ class InfinityConnection(DocStoreConnection): for k, v in d.items(): if k.endswith("_kwd") and isinstance(v, list): d[k] = " ".join(v) - if k == 'kb_id': + elif k == 'kb_id': if isinstance(d[k], list): d[k] = d[k][0] # since d[k] is a list, but we need a str + elif k == "position_int": + assert isinstance(v, list) + arr = [num for row in v for num in row] + d[k] = "_".join(f"{num:08x}" for num in arr) + elif k in ["page_num_int", "top_int", "position_int"]: + assert isinstance(v, list) + d[k] = "_".join(f"{num:08x}" for num in v) ids = ["'{}'".format(d["id"]) for d in documents] str_ids = ", ".join(ids) str_filter = f"id IN ({str_ids})" table_instance.delete(str_filter) # for doc in documents: - # logger.info(f"insert position_list: {doc['position_list']}") + # logger.info(f"insert position_int: {doc['position_int']}") # logger.info(f"InfinityConnection.insert {json.dumps(documents)}") table_instance.insert(documents) self.connPool.release_conn(inf_conn) @@ -367,8 +377,8 @@ class InfinityConnection(DocStoreConnection): def update( self, condition: dict, newValue: dict, indexName: str, knowledgebaseId: str ) -> bool: - # if 'position_list' in newValue: - # logger.info(f"upsert position_list: {newValue['position_list']}") + # if 'position_int' in newValue: + # logger.info(f"update position_int: {newValue['position_int']}") inf_conn = self.connPool.get_conn() db_instance = inf_conn.get_database(self.dbName) table_name = f"{indexName}_{knowledgebaseId}" @@ -377,6 +387,16 @@ class InfinityConnection(DocStoreConnection): for k, v in newValue.items(): if k.endswith("_kwd") and isinstance(v, list): newValue[k] = " ".join(v) + elif k == 'kb_id': + if isinstance(newValue[k], list): + newValue[k] = newValue[k][0] # since d[k] is a list, but we need a str + elif k == "position_int": + assert isinstance(v, list) + arr = [num for row in v for num in row] + newValue[k] = "_".join(f"{num:08x}" for num in arr) + elif k in ["page_num_int", "top_int"]: + assert isinstance(v, list) + newValue[k] = "_".join(f"{num:08x}" for num in v) table_instance.update(filter, newValue) self.connPool.release_conn(inf_conn) return True @@ -423,9 +443,22 @@ class InfinityConnection(DocStoreConnection): v = res[fieldnm][i] if isinstance(v, Series): v = list(v) - elif fieldnm == "important_kwd": + elif fieldnm.endswith("_kwd"): assert isinstance(v, str) v = v.split() + elif fieldnm == "position_int": + assert isinstance(v, str) + if v: + arr = [int(hex_val, 16) for hex_val in v.split('_')] + v = [arr[i:i + 4] for i in range(0, len(arr), 4)] + else: + v = [] + elif fieldnm in ["page_num_int", "top_int"]: + assert isinstance(v, str) + if v: + v = [int(hex_val, 16) for hex_val in v.split('_')] + else: + v = [] else: if not isinstance(v, str): v = str(v)