refine table parser (#120)
This commit is contained in:
parent
f1f09df901
commit
0feb085c88
@ -51,6 +51,7 @@ class TaskService(CommonService):
|
||||
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))\
|
||||
.where(
|
||||
Document.status == StatusEnum.VALID.value,
|
||||
Document.run == TaskStatus.RUNNING.value,
|
||||
~(Document.type == FileType.VIRTUAL.value),
|
||||
cls.model.progress == 0,
|
||||
cls.model.update_time >= tm,
|
||||
|
||||
@ -42,7 +42,9 @@ class HuPptParser(object):
|
||||
BytesIO(fnm))
|
||||
txts = []
|
||||
self.total_page = len(ppt.slides)
|
||||
for i, slide in enumerate(ppt.slides[from_page: to_page]):
|
||||
for i, slide in enumerate(ppt.slides):
|
||||
if i < from_page: continue
|
||||
if i >= to_page:break
|
||||
texts = []
|
||||
for shape in slide.shapes:
|
||||
txt = self.__extract(shape)
|
||||
|
||||
@ -13,6 +13,9 @@
|
||||
import copy
|
||||
import re
|
||||
from io import BytesIO
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from rag.nlp import tokenize, is_english
|
||||
from rag.nlp import huqie
|
||||
from deepdoc.parser import PdfParser, PptParser
|
||||
@ -30,7 +33,7 @@ class Ppt(PptParser):
|
||||
for i, slide in enumerate(presentation.slides[from_page: to_page]):
|
||||
buffered = BytesIO()
|
||||
slide.get_thumbnail(0.5, 0.5).save(buffered, drawing.imaging.ImageFormat.jpeg)
|
||||
imgs.append(buffered.getvalue())
|
||||
imgs.append(Image.open(buffered))
|
||||
assert len(imgs) == len(txts), "Slides text and image do not match: {} vs. {}".format(len(imgs), len(txts))
|
||||
callback(0.9, "Image extraction finished")
|
||||
self.is_english = is_english(txts)
|
||||
|
||||
@ -58,12 +58,9 @@ class Excel(ExcelParser):
|
||||
continue
|
||||
data.append(row)
|
||||
done += 1
|
||||
if done % 999 == 0:
|
||||
callback(done * 0.6 / total, ("Extract records: {}".format(len(res)) + (
|
||||
f"{len(fails)} failure({sheetname}), line: %s..." % (",".join(fails[:3])) if fails else "")))
|
||||
res.append(pd.DataFrame(np.array(data), columns=headers))
|
||||
|
||||
callback(0.6, ("Extract records: {}. ".format(done) + (
|
||||
callback(0.3, ("Extract records: {}~{}".format(from_page+1, min(to_page, from_page+rn)) + (
|
||||
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
||||
return res
|
||||
|
||||
@ -151,7 +148,7 @@ def chunk(filename, binary=None, from_page=0, to_page=10000000000, lang="Chinese
|
||||
headers = lines[0].split(kwargs.get("delimiter", "\t"))
|
||||
rows = []
|
||||
for i, line in enumerate(lines[1:]):
|
||||
if from_page < from_page:continue
|
||||
if i < from_page:continue
|
||||
if i >= to_page: break
|
||||
row = [l for l in line.split(kwargs.get("delimiter", "\t"))]
|
||||
if len(row) != len(headers):
|
||||
@ -191,12 +188,15 @@ def chunk(filename, binary=None, from_page=0, to_page=10000000000, lang="Chinese
|
||||
df[clmns[j]] = cln
|
||||
if ty == "text":
|
||||
txts.extend([str(c) for c in cln if c])
|
||||
clmns_map = [(py_clmns[j] + fieds_map[clmn_tys[j]], clmns[j])
|
||||
clmns_map = [(py_clmns[i] + fieds_map[clmn_tys[i]], clmns[i])
|
||||
for i in range(len(clmns))]
|
||||
|
||||
eng = lang.lower() == "english"#is_english(txts)
|
||||
for ii, row in df.iterrows():
|
||||
d = {}
|
||||
d = {
|
||||
"docnm_kwd": filename,
|
||||
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
||||
}
|
||||
row_txt = []
|
||||
for j in range(len(clmns)):
|
||||
if row[clmns[j]] is None:
|
||||
|
||||
@ -91,10 +91,10 @@ def dispatch():
|
||||
tsks.append(task)
|
||||
elif r["parser_id"] == "table":
|
||||
rn = HuExcelParser.row_number(r["name"], MINIO.get(r["kb_id"], r["location"]))
|
||||
for i in range(0, rn, 1000):
|
||||
for i in range(0, rn, 3000):
|
||||
task = new_task()
|
||||
task["from_page"] = i
|
||||
task["to_page"] = min(i + 1000, rn)
|
||||
task["to_page"] = min(i + 3000, rn)
|
||||
tsks.append(task)
|
||||
else:
|
||||
tsks.append(new_task())
|
||||
|
||||
@ -128,8 +128,6 @@ def build(row):
|
||||
|
||||
return
|
||||
|
||||
callback(msg="Finished slicing files(%d). Start to embedding the content."%len(cks))
|
||||
|
||||
docs = []
|
||||
doc = {
|
||||
"doc_id": row["doc_id"],
|
||||
@ -179,8 +177,8 @@ def embedding(docs, mdl, parser_config={}, callback=None):
|
||||
tk_count += c
|
||||
|
||||
cnts_ = np.array([])
|
||||
for i in range(0, len(cnts), 32):
|
||||
vts, c = mdl.encode(cnts[i: i+32])
|
||||
for i in range(0, len(cnts), 8):
|
||||
vts, c = mdl.encode(cnts[i: i+8])
|
||||
if len(cnts_) == 0: cnts_ = vts
|
||||
else: cnts_ = np.concatenate((cnts_, vts), axis=0)
|
||||
tk_count += c
|
||||
@ -226,6 +224,7 @@ def main(comm, mod):
|
||||
continue
|
||||
# TODO: exception handler
|
||||
## set_progress(r["did"], -1, "ERROR: ")
|
||||
callback(msg="Finished slicing files(%d). Start to embedding the content."%len(cks))
|
||||
try:
|
||||
tk_count = embedding(cks, embd_mdl, r["parser_config"], callback)
|
||||
except Exception as e:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user