Expanded the supported LLM list (#960)
### What problem does this PR solve? _Briefly describe what this PR aims to solve. Include background context that will help reviewers understand the purpose of the PR._ ### Type of change - [x] Documentation Update
This commit is contained in:
parent
0f317221b4
commit
21aac545d9
@ -67,7 +67,7 @@ The serving IP and port inside the docker container. This is not updating until
|
||||
Newly signed-up users use LLM configured by this part. Otherwise, user need to configure his own LLM in *setting*.
|
||||
|
||||
### factory
|
||||
The LLM suppliers. 'Tongyi-Qianwen', "OpenAI", "Moonshot" and "ZHIPU-AI" are supported.
|
||||
The LLM suppliers. "OpenAI", "Tongyi-Qianwen", "ZHIPU-AI", "Moonshot", "DeepSeek", "Baichuan", and "VolcEngine" are supported.
|
||||
|
||||
### api_key
|
||||
The corresponding API key of your assigned LLM vendor.
|
||||
|
||||
@ -10,10 +10,15 @@ You have two ways to input your LLM API key.
|
||||
## Before Starting The System
|
||||
|
||||
In **user_default_llm** of [service_conf.yaml](https://github.com/infiniflow/ragflow/blob/main/docker/service_conf.yaml), you need to specify LLM factory and your own _API_KEY_.
|
||||
RagFlow supports the flowing LLM factory, and with more coming in the pipeline:
|
||||
RAGFlow supports the flowing LLMs, with more coming in the pipeline:
|
||||
|
||||
> [OpenAI](https://platform.openai.com/login?launch), [Tongyi-Qianwen](https://dashscope.console.aliyun.com/model),
|
||||
> [ZHIPU-AI](https://open.bigmodel.cn/), [Moonshot](https://platform.moonshot.cn/docs)
|
||||
- [OpenAI](https://platform.openai.com/login?launch)
|
||||
- [Tongyi-Qianwen](https://dashscope.console.aliyun.com/model),
|
||||
- [ZHIPU-AI](https://open.bigmodel.cn/),
|
||||
- [Moonshot](https://platform.moonshot.cn/docs)
|
||||
- [DeepSeek](https://platform.deepseek.com/api-docs/)
|
||||
- [Baichuan](https://www.baichuan-ai.com/home)
|
||||
- [VolcEngine](https://www.volcengine.com/docs/82379)
|
||||
|
||||
After sign in these LLM suppliers, create your own API-Key, they all have a certain amount of free quota.
|
||||
|
||||
|
||||
@ -101,8 +101,11 @@ RAGFlow is a RAG engine, and it needs to work with an LLM to offer grounded, hal
|
||||
|
||||
- OpenAI
|
||||
- Tongyi-Qianwen
|
||||
- ZHIPU-AI
|
||||
- Moonshot
|
||||
- DeepSeek-V2
|
||||
- Baichuan
|
||||
- VolcEngine
|
||||
|
||||
> RAGFlow also supports deploying LLMs locally using Ollama or Xinference, but this part is not covered in this quick start guide.
|
||||
|
||||
|
||||
@ -108,13 +108,13 @@ This method retrieves the history of a specified conversation session.
|
||||
- `chunks`
|
||||
- `content_with_weight`: Content of the chunk.
|
||||
- `doc_name`: Name of the *hit* document.
|
||||
- `img_id`: The image ID of the chunk. It is an optional field only for PDF, PPTX, and images. Call ['GET' /document/get/\<id\>](#get-document-content-or-image) to retrieve the image.
|
||||
- `img_id`: The image ID of the chunk. It is an optional field only for PDF, PPTX, and images. Call ['GET' /document/get/\<id\>](#get-document-content) to retrieve the image.
|
||||
- positions: [page_number, [upleft corner(x, y)], [right bottom(x, y)]], the chunk position, only for PDF.
|
||||
- similarity: The hybrid similarity.
|
||||
- term_similarity: The keyword simimlarity.
|
||||
- vector_similarity: The embedding similarity.
|
||||
- `doc_aggs`:
|
||||
- `doc_id`: ID of the *hit* document. Call ['GET' /document/get/\<id\>](#get-document-content-or-image) to retrieve the document.
|
||||
- `doc_id`: ID of the *hit* document. Call ['GET' /document/get/\<id\>](#get-document-content) to retrieve the document.
|
||||
- `doc_name`: Name of the *hit* document.
|
||||
- `count`: The number of *hit* chunks in this document.
|
||||
|
||||
@ -235,13 +235,13 @@ This method retrieves from RAGFlow the answer to the user's latest question.
|
||||
- `chunks`: The retrieved chunks that contribute to the answer.
|
||||
- `content_with_weight`: Content of the chunk.
|
||||
- `doc_name`: Name of the *hit* document.
|
||||
- `img_id`: The image ID of the chunk. It is an optional field only for PDF, PPTX, and images. Call ['GET' /document/get/\<id\>](#get-document-content-or-image) to retrieve the image.
|
||||
- `img_id`: The image ID of the chunk. It is an optional field only for PDF, PPTX, and images. Call ['GET' /document/get/\<id\>](#get-document-content) to retrieve the image.
|
||||
- `positions`: [page_number, [upleft corner(x, y)], [right bottom(x, y)]], the chunk position, only for PDF.
|
||||
- `similarity`: The hybrid similarity.
|
||||
- `term_similarity`: The keyword simimlarity.
|
||||
- `vector_similarity`: The embedding similarity.
|
||||
- `doc_aggs`:
|
||||
- `doc_id`: ID of the *hit* document. Call ['GET' /document/get/\<id\>](#get-document-content-or-image) to retrieve the document.
|
||||
- `doc_id`: ID of the *hit* document. Call ['GET' /document/get/\<id\>](#get-document-content) to retrieve the document.
|
||||
- `doc_name`: Name of the *hit* document.
|
||||
- `count`: The number of *hit* chunks in this document.
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user