add base url for OpenAI (#166)
This commit is contained in:
parent
be2b904daf
commit
38e5737067
@ -20,7 +20,7 @@
|
|||||||
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=7d09f1" alt="license">
|
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=7d09f1" alt="license">
|
||||||
</a>
|
</a>
|
||||||
</p>
|
</p>
|
||||||
[RagFlow](http://demo.ragflow.io) is a knowledge management platform built on custom-build document understanding engine and LLM, with reasoned and well-founded answers to your question. Clone this repository, you can deploy your own knowledge management platform to empower your business with AI.
|
[RagFlow](https://demo.ragflow.io) is a knowledge management platform built on custom-build document understanding engine and LLM, with reasoned and well-founded answers to your question. Clone this repository, you can deploy your own knowledge management platform to empower your business with AI.
|
||||||
|
|
||||||
|
|
||||||
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
||||||
@ -56,12 +56,12 @@
|
|||||||
|
|
||||||
Then, you need to check the following command:
|
Then, you need to check the following command:
|
||||||
```bash
|
```bash
|
||||||
121:/ragflow# sysctl vm.max_map_count
|
$ sysctl vm.max_map_count
|
||||||
vm.max_map_count = 262144
|
vm.max_map_count = 262144
|
||||||
```
|
```
|
||||||
If **vm.max_map_count** is not greater than 65535:
|
If **vm.max_map_count** is not greater than 65535:
|
||||||
```bash
|
```bash
|
||||||
121:/ragflow# sudo sysctl -w vm.max_map_count=262144
|
$ sudo sysctl -w vm.max_map_count=262144
|
||||||
```
|
```
|
||||||
Note that this change is reset after a system reboot. To render your change permanent, add or update the following line in **/etc/sysctl.conf**:
|
Note that this change is reset after a system reboot. To render your change permanent, add or update the following line in **/etc/sysctl.conf**:
|
||||||
|
|
||||||
@ -126,6 +126,7 @@ Open your browser, enter the IP address of your server, _**Hallelujah**_ again!
|
|||||||
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
||||||
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
|
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
## 🔧 Configurations
|
## 🔧 Configurations
|
||||||
|
|
||||||
If you need to change the default setting of the system when you deploy it. There several ways to configure it.
|
If you need to change the default setting of the system when you deploy it. There several ways to configure it.
|
||||||
|
|||||||
@ -45,7 +45,7 @@ def set_api_key():
|
|||||||
for llm in LLMService.query(fid=factory):
|
for llm in LLMService.query(fid=factory):
|
||||||
if llm.model_type == LLMType.EMBEDDING.value:
|
if llm.model_type == LLMType.EMBEDDING.value:
|
||||||
mdl = EmbeddingModel[factory](
|
mdl = EmbeddingModel[factory](
|
||||||
req["api_key"], llm.llm_name)
|
req["api_key"], llm.llm_name, req.get("base_url"))
|
||||||
try:
|
try:
|
||||||
arr, tc = mdl.encode(["Test if the api key is available"])
|
arr, tc = mdl.encode(["Test if the api key is available"])
|
||||||
if len(arr[0]) == 0 or tc == 0:
|
if len(arr[0]) == 0 or tc == 0:
|
||||||
@ -54,7 +54,7 @@ def set_api_key():
|
|||||||
msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
|
msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
|
||||||
elif not chat_passed and llm.model_type == LLMType.CHAT.value:
|
elif not chat_passed and llm.model_type == LLMType.CHAT.value:
|
||||||
mdl = ChatModel[factory](
|
mdl = ChatModel[factory](
|
||||||
req["api_key"], llm.llm_name)
|
req["api_key"], llm.llm_name, req.get("base_url"))
|
||||||
try:
|
try:
|
||||||
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
|
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
|
||||||
"temperature": 0.9})
|
"temperature": 0.9})
|
||||||
@ -83,7 +83,9 @@ def set_api_key():
|
|||||||
llm_factory=factory,
|
llm_factory=factory,
|
||||||
llm_name=llm.llm_name,
|
llm_name=llm.llm_name,
|
||||||
model_type=llm.model_type,
|
model_type=llm.model_type,
|
||||||
api_key=req["api_key"])
|
api_key=req["api_key"],
|
||||||
|
api_base=req.get("base_url", "")
|
||||||
|
)
|
||||||
|
|
||||||
return get_json_result(data=True)
|
return get_json_result(data=True)
|
||||||
|
|
||||||
|
|||||||
@ -84,19 +84,21 @@ class TenantLLMService(CommonService):
|
|||||||
if model_config["llm_factory"] not in EmbeddingModel:
|
if model_config["llm_factory"] not in EmbeddingModel:
|
||||||
return
|
return
|
||||||
return EmbeddingModel[model_config["llm_factory"]](
|
return EmbeddingModel[model_config["llm_factory"]](
|
||||||
model_config["api_key"], model_config["llm_name"])
|
model_config["api_key"], model_config["llm_name"], model_config["api_base"])
|
||||||
|
|
||||||
if llm_type == LLMType.IMAGE2TEXT.value:
|
if llm_type == LLMType.IMAGE2TEXT.value:
|
||||||
if model_config["llm_factory"] not in CvModel:
|
if model_config["llm_factory"] not in CvModel:
|
||||||
return
|
return
|
||||||
return CvModel[model_config["llm_factory"]](
|
return CvModel[model_config["llm_factory"]](
|
||||||
model_config["api_key"], model_config["llm_name"], lang)
|
model_config["api_key"], model_config["llm_name"], lang,
|
||||||
|
base_url=model_config["api_base"]
|
||||||
|
)
|
||||||
|
|
||||||
if llm_type == LLMType.CHAT.value:
|
if llm_type == LLMType.CHAT.value:
|
||||||
if model_config["llm_factory"] not in ChatModel:
|
if model_config["llm_factory"] not in ChatModel:
|
||||||
return
|
return
|
||||||
return ChatModel[model_config["llm_factory"]](
|
return ChatModel[model_config["llm_factory"]](
|
||||||
model_config["api_key"], model_config["llm_name"])
|
model_config["api_key"], model_config["llm_name"], model_config["api_base"])
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
@DB.connection_context()
|
@DB.connection_context()
|
||||||
|
|||||||
@ -43,6 +43,8 @@ class Recognizer(object):
|
|||||||
if not os.path.exists(model_file_path):
|
if not os.path.exists(model_file_path):
|
||||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
|
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
|
||||||
model_file_path = os.path.join(model_dir, task_name + ".onnx")
|
model_file_path = os.path.join(model_dir, task_name + ".onnx")
|
||||||
|
else:
|
||||||
|
model_file_path = os.path.join(model_dir, task_name + ".onnx")
|
||||||
|
|
||||||
if not os.path.exists(model_file_path):
|
if not os.path.exists(model_file_path):
|
||||||
raise ValueError("not find model file path {}".format(
|
raise ValueError("not find model file path {}".format(
|
||||||
|
|||||||
@ -31,8 +31,9 @@ class Base(ABC):
|
|||||||
|
|
||||||
|
|
||||||
class GptTurbo(Base):
|
class GptTurbo(Base):
|
||||||
def __init__(self, key, model_name="gpt-3.5-turbo"):
|
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
|
||||||
self.client = OpenAI(api_key=key)
|
if not base_url: base_url="https://api.openai.com/v1"
|
||||||
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def chat(self, system, history, gen_conf):
|
def chat(self, system, history, gen_conf):
|
||||||
@ -53,9 +54,10 @@ class GptTurbo(Base):
|
|||||||
|
|
||||||
|
|
||||||
class MoonshotChat(GptTurbo):
|
class MoonshotChat(GptTurbo):
|
||||||
def __init__(self, key, model_name="moonshot-v1-8k"):
|
def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
|
||||||
|
if not base_url: base_url="https://api.moonshot.cn/v1"
|
||||||
self.client = OpenAI(
|
self.client = OpenAI(
|
||||||
api_key=key, base_url="https://api.moonshot.cn/v1",)
|
api_key=key, base_url=base_url)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def chat(self, system, history, gen_conf):
|
def chat(self, system, history, gen_conf):
|
||||||
@ -76,7 +78,7 @@ class MoonshotChat(GptTurbo):
|
|||||||
|
|
||||||
|
|
||||||
class QWenChat(Base):
|
class QWenChat(Base):
|
||||||
def __init__(self, key, model_name=Generation.Models.qwen_turbo):
|
def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
|
||||||
import dashscope
|
import dashscope
|
||||||
dashscope.api_key = key
|
dashscope.api_key = key
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
@ -105,7 +107,7 @@ class QWenChat(Base):
|
|||||||
|
|
||||||
|
|
||||||
class ZhipuChat(Base):
|
class ZhipuChat(Base):
|
||||||
def __init__(self, key, model_name="glm-3-turbo"):
|
def __init__(self, key, model_name="glm-3-turbo", **kwargs):
|
||||||
self.client = ZhipuAI(api_key=key)
|
self.client = ZhipuAI(api_key=key)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
@ -154,7 +156,7 @@ class LocalLLM(Base):
|
|||||||
|
|
||||||
return do_rpc
|
return do_rpc
|
||||||
|
|
||||||
def __init__(self, key, model_name="glm-3-turbo"):
|
def __init__(self, **kwargs):
|
||||||
self.client = LocalLLM.RPCProxy("127.0.0.1", 7860)
|
self.client = LocalLLM.RPCProxy("127.0.0.1", 7860)
|
||||||
|
|
||||||
def chat(self, system, history, gen_conf):
|
def chat(self, system, history, gen_conf):
|
||||||
|
|||||||
@ -67,8 +67,9 @@ class Base(ABC):
|
|||||||
|
|
||||||
|
|
||||||
class GptV4(Base):
|
class GptV4(Base):
|
||||||
def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese"):
|
def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"):
|
||||||
self.client = OpenAI(api_key=key)
|
if not base_url: base_url="https://api.openai.com/v1"
|
||||||
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
self.lang = lang
|
self.lang = lang
|
||||||
|
|
||||||
@ -84,7 +85,7 @@ class GptV4(Base):
|
|||||||
|
|
||||||
|
|
||||||
class QWenCV(Base):
|
class QWenCV(Base):
|
||||||
def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese"):
|
def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", **kwargs):
|
||||||
import dashscope
|
import dashscope
|
||||||
dashscope.api_key = key
|
dashscope.api_key = key
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
@ -123,7 +124,7 @@ class QWenCV(Base):
|
|||||||
|
|
||||||
|
|
||||||
class Zhipu4V(Base):
|
class Zhipu4V(Base):
|
||||||
def __init__(self, key, model_name="glm-4v", lang="Chinese"):
|
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
|
||||||
self.client = ZhipuAI(api_key=key)
|
self.client = ZhipuAI(api_key=key)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
self.lang = lang
|
self.lang = lang
|
||||||
@ -140,7 +141,7 @@ class Zhipu4V(Base):
|
|||||||
|
|
||||||
|
|
||||||
class LocalCV(Base):
|
class LocalCV(Base):
|
||||||
def __init__(self, key, model_name="glm-4v", lang="Chinese"):
|
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def describe(self, image, max_tokens=1024):
|
def describe(self, image, max_tokens=1024):
|
||||||
|
|||||||
@ -51,7 +51,7 @@ class Base(ABC):
|
|||||||
|
|
||||||
|
|
||||||
class HuEmbedding(Base):
|
class HuEmbedding(Base):
|
||||||
def __init__(self, key="", model_name=""):
|
def __init__(self, **kwargs):
|
||||||
"""
|
"""
|
||||||
If you have trouble downloading HuggingFace models, -_^ this might help!!
|
If you have trouble downloading HuggingFace models, -_^ this might help!!
|
||||||
|
|
||||||
@ -81,8 +81,9 @@ class HuEmbedding(Base):
|
|||||||
|
|
||||||
|
|
||||||
class OpenAIEmbed(Base):
|
class OpenAIEmbed(Base):
|
||||||
def __init__(self, key, model_name="text-embedding-ada-002"):
|
def __init__(self, key, model_name="text-embedding-ada-002", base_url="https://api.openai.com/v1"):
|
||||||
self.client = OpenAI(api_key=key)
|
if not base_url: base_url="https://api.openai.com/v1"
|
||||||
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=32):
|
||||||
@ -98,7 +99,7 @@ class OpenAIEmbed(Base):
|
|||||||
|
|
||||||
|
|
||||||
class QWenEmbed(Base):
|
class QWenEmbed(Base):
|
||||||
def __init__(self, key, model_name="text_embedding_v2"):
|
def __init__(self, key, model_name="text_embedding_v2", **kwargs):
|
||||||
dashscope.api_key = key
|
dashscope.api_key = key
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
@ -131,7 +132,7 @@ class QWenEmbed(Base):
|
|||||||
|
|
||||||
|
|
||||||
class ZhipuEmbed(Base):
|
class ZhipuEmbed(Base):
|
||||||
def __init__(self, key, model_name="embedding-2"):
|
def __init__(self, key, model_name="embedding-2", **kwargs):
|
||||||
self.client = ZhipuAI(api_key=key)
|
self.client = ZhipuAI(api_key=key)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
|
|||||||
@ -280,4 +280,5 @@ if __name__ == "__main__":
|
|||||||
from mpi4py import MPI
|
from mpi4py import MPI
|
||||||
|
|
||||||
comm = MPI.COMM_WORLD
|
comm = MPI.COMM_WORLD
|
||||||
main(int(sys.argv[2]), int(sys.argv[1]))
|
while True:
|
||||||
|
main(int(sys.argv[2]), int(sys.argv[1]))
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user