Add 'One' chunk method (#137)
This commit is contained in:
parent
fce14ee187
commit
5875c8ba08
@ -88,8 +88,8 @@ If your machine doesn't have *Docker* installed, please refer to [Install Docker
|
||||
> In **user_default_llm** of [service_conf.yaml](./docker/service_conf.yaml), you need to specify LLM factory and your own _API_KEY_.
|
||||
> It's O.K if you don't have _API_KEY_ at the moment, you can specify it later at the setting part after starting and logging in the system.
|
||||
> - We have supported the flowing LLM factory, and the others is coming soon:
|
||||
> [OpenAI](https://platform.openai.com/login?launch), [通义千问/QWen](https://dashscope.console.aliyun.com/model),
|
||||
> [智谱AI/ZhipuAI](https://open.bigmodel.cn/)
|
||||
> [OpenAI](https://platform.openai.com/login?launch), [Tongyi-Qianwen](https://dashscope.console.aliyun.com/model),
|
||||
> [ZHIPU-AI](https://open.bigmodel.cn/), [Moonshot](https://platform.moonshot.cn/docs/docs)
|
||||
```bash
|
||||
121:/# git clone https://github.com/infiniflow/ragflow.git
|
||||
121:/# cd ragflow/docker
|
||||
|
||||
@ -79,3 +79,4 @@ class ParserType(StrEnum):
|
||||
TABLE = "table"
|
||||
NAIVE = "naive"
|
||||
PICTURE = "picture"
|
||||
ONE = "one"
|
||||
|
||||
@ -79,12 +79,12 @@ factory_infos = [{
|
||||
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
||||
"status": "1",
|
||||
},{
|
||||
"name": "通义千问",
|
||||
"name": "Tongyi-Qianwen",
|
||||
"logo": "",
|
||||
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
||||
"status": "1",
|
||||
},{
|
||||
"name": "智谱AI",
|
||||
"name": "ZHIPU-AI",
|
||||
"logo": "",
|
||||
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
||||
"status": "1",
|
||||
@ -270,6 +270,14 @@ def init_llm_factory():
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
"""
|
||||
drop table llm;
|
||||
drop table factories;
|
||||
update tenant_llm set llm_factory='Tongyi-Qianwen' where llm_factory='通义千问';
|
||||
update tenant_llm set llm_factory='ZHIPU-AI' where llm_factory='智谱AI';
|
||||
update tenant set parser_ids='naive:General,one:One,qa:Q&A,resume:Resume,table:Table,laws:Laws,manual:Manual,book:Book,paper:Paper,presentation:Presentation,picture:Picture';
|
||||
"""
|
||||
|
||||
|
||||
def init_web_data():
|
||||
start_time = time.time()
|
||||
|
||||
@ -52,7 +52,7 @@ REQUEST_MAX_WAIT_SEC = 300
|
||||
USE_REGISTRY = get_base_config("use_registry")
|
||||
|
||||
default_llm = {
|
||||
"通义千问": {
|
||||
"Tongyi-Qianwen": {
|
||||
"chat_model": "qwen-plus",
|
||||
"embedding_model": "text-embedding-v2",
|
||||
"image2text_model": "qwen-vl-max",
|
||||
@ -64,7 +64,7 @@ default_llm = {
|
||||
"image2text_model": "gpt-4-vision-preview",
|
||||
"asr_model": "whisper-1",
|
||||
},
|
||||
"智谱AI": {
|
||||
"ZHIPU-AI": {
|
||||
"chat_model": "glm-3-turbo",
|
||||
"embedding_model": "embedding-2",
|
||||
"image2text_model": "glm-4v",
|
||||
@ -84,17 +84,17 @@ default_llm = {
|
||||
}
|
||||
}
|
||||
LLM = get_base_config("user_default_llm", {})
|
||||
LLM_FACTORY = LLM.get("factory", "通义千问")
|
||||
LLM_FACTORY = LLM.get("factory", "Tongyi-Qianwen")
|
||||
if LLM_FACTORY not in default_llm:
|
||||
print("\33[91m【ERROR】\33[0m:", f"LLM factory {LLM_FACTORY} has not supported yet, switch to '通义千问/QWen' automatically, and please check the API_KEY in service_conf.yaml.")
|
||||
LLM_FACTORY = "通义千问"
|
||||
print("\33[91m【ERROR】\33[0m:", f"LLM factory {LLM_FACTORY} has not supported yet, switch to 'Tongyi-Qianwen/QWen' automatically, and please check the API_KEY in service_conf.yaml.")
|
||||
LLM_FACTORY = "Tongyi-Qianwen"
|
||||
CHAT_MDL = default_llm[LLM_FACTORY]["chat_model"]
|
||||
EMBEDDING_MDL = default_llm[LLM_FACTORY]["embedding_model"]
|
||||
ASR_MDL = default_llm[LLM_FACTORY]["asr_model"]
|
||||
IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"]
|
||||
|
||||
API_KEY = LLM.get("api_key", "")
|
||||
PARSERS = LLM.get("parsers", "naive:General,qa:Q&A,resume:Resume,table:Table,laws:Laws,manual:Manual,book:Book,paper:Paper,presentation:Presentation,picture:Picture")
|
||||
PARSERS = LLM.get("parsers", "naive:General,one:One,qa:Q&A,resume:Resume,table:Table,laws:Laws,manual:Manual,book:Book,paper:Paper,presentation:Presentation,picture:Picture")
|
||||
|
||||
# distribution
|
||||
DEPENDENT_DISTRIBUTION = get_base_config("dependent_distribution", False)
|
||||
|
||||
@ -57,7 +57,7 @@ class Pdf(PdfParser):
|
||||
sec_ids = []
|
||||
sid = 0
|
||||
for i, lvl in enumerate(levels):
|
||||
if lvl <= most_level: sid += 1
|
||||
if lvl <= most_level and i > 0 and lvl != levels[i-1]: sid += 1
|
||||
sec_ids.append(sid)
|
||||
#print(lvl, self.boxes[i]["text"], most_level)
|
||||
|
||||
@ -75,7 +75,7 @@ class Pdf(PdfParser):
|
||||
continue
|
||||
chunks.append(txt + poss)
|
||||
if sec_id >-1: last_sid = sec_id
|
||||
return chunks
|
||||
return chunks, tbls
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
||||
@ -86,7 +86,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
|
||||
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
pdf_parser = Pdf()
|
||||
cks = pdf_parser(filename if not binary else binary,
|
||||
cks, tbls = pdf_parser(filename if not binary else binary,
|
||||
from_page=from_page, to_page=to_page, callback=callback)
|
||||
else: raise NotImplementedError("file type not supported yet(pdf supported)")
|
||||
doc = {
|
||||
@ -100,7 +100,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
i = 0
|
||||
chunk = []
|
||||
tk_cnt = 0
|
||||
res = []
|
||||
res = tokenize_table(tbls, doc, eng)
|
||||
def add_chunk():
|
||||
nonlocal chunk, res, doc, pdf_parser, tk_cnt
|
||||
d = copy.deepcopy(doc)
|
||||
|
||||
@ -49,7 +49,7 @@ class Pdf(PdfParser):
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
||||
"""
|
||||
Supported file formats are docx, pdf, txt.
|
||||
Supported file formats are docx, pdf, excel, txt.
|
||||
This method apply the naive ways to chunk files.
|
||||
Successive text will be sliced into pieces using 'delimiter'.
|
||||
Next, these successive pieces are merge into chunks whose token number is no more than 'Max token number'.
|
||||
|
||||
108
rag/app/one.py
Normal file
108
rag/app/one.py
Normal file
@ -0,0 +1,108 @@
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import copy
|
||||
import re
|
||||
from rag.app import laws
|
||||
from rag.nlp import huqie, is_english, tokenize, naive_merge, tokenize_table, add_positions
|
||||
from deepdoc.parser import PdfParser, ExcelParser
|
||||
from rag.settings import cron_logger
|
||||
|
||||
|
||||
class Pdf(PdfParser):
|
||||
def __call__(self, filename, binary=None, from_page=0,
|
||||
to_page=100000, zoomin=3, callback=None):
|
||||
callback(msg="OCR is running...")
|
||||
self.__images__(
|
||||
filename if not binary else binary,
|
||||
zoomin,
|
||||
from_page,
|
||||
to_page,
|
||||
callback
|
||||
)
|
||||
callback(msg="OCR finished")
|
||||
|
||||
from timeit import default_timer as timer
|
||||
start = timer()
|
||||
self._layouts_rec(zoomin)
|
||||
callback(0.63, "Layout analysis finished.")
|
||||
print("paddle layouts:", timer() - start)
|
||||
self._table_transformer_job(zoomin)
|
||||
callback(0.65, "Table analysis finished.")
|
||||
self._text_merge()
|
||||
callback(0.67, "Text merging finished")
|
||||
tbls = self._extract_table_figure(True, zoomin, True, True)
|
||||
self._concat_downward()
|
||||
|
||||
sections = [(b["text"], self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)]
|
||||
for (img, rows), poss in tbls:
|
||||
sections.append((rows if isinstance(rows, str) else rows[0],
|
||||
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
|
||||
return [txt for txt, _ in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1]))]
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
||||
"""
|
||||
Supported file formats are docx, pdf, excel, txt.
|
||||
One file forms a chunk which maintains original text order.
|
||||
"""
|
||||
|
||||
eng = lang.lower() == "english"#is_english(cks)
|
||||
|
||||
sections = []
|
||||
if re.search(r"\.docx?$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
for txt in laws.Docx()(filename, binary):
|
||||
sections.append(txt)
|
||||
callback(0.8, "Finish parsing.")
|
||||
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
pdf_parser = Pdf()
|
||||
sections = pdf_parser(filename if not binary else binary, to_page=to_page, callback=callback)
|
||||
elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
excel_parser = ExcelParser()
|
||||
sections = [excel_parser.html(binary)]
|
||||
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
txt = ""
|
||||
if binary:
|
||||
txt = binary.decode("utf-8")
|
||||
else:
|
||||
with open(filename, "r") as f:
|
||||
while True:
|
||||
l = f.readline()
|
||||
if not l: break
|
||||
txt += l
|
||||
sections = txt.split("\n")
|
||||
sections = [(l, "") for l in sections if l]
|
||||
callback(0.8, "Finish parsing.")
|
||||
else:
|
||||
raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
||||
|
||||
doc = {
|
||||
"docnm_kwd": filename,
|
||||
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
||||
}
|
||||
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
||||
tokenize(doc, "\n".join(sections), eng)
|
||||
return [doc]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
|
||||
|
||||
def dummy(prog=None, msg=""):
|
||||
pass
|
||||
|
||||
|
||||
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|
||||
@ -21,8 +21,8 @@ from .cv_model import *
|
||||
EmbeddingModel = {
|
||||
"Local": HuEmbedding,
|
||||
"OpenAI": OpenAIEmbed,
|
||||
"通义千问": HuEmbedding, #QWenEmbed,
|
||||
"智谱AI": ZhipuEmbed,
|
||||
"Tongyi-Qianwen": HuEmbedding, #QWenEmbed,
|
||||
"ZHIPU-AI": ZhipuEmbed,
|
||||
"Moonshot": HuEmbedding
|
||||
}
|
||||
|
||||
@ -30,16 +30,16 @@ EmbeddingModel = {
|
||||
CvModel = {
|
||||
"OpenAI": GptV4,
|
||||
"Local": LocalCV,
|
||||
"通义千问": QWenCV,
|
||||
"智谱AI": Zhipu4V,
|
||||
"Tongyi-Qianwen": QWenCV,
|
||||
"ZHIPU-AI": Zhipu4V,
|
||||
"Moonshot": LocalCV
|
||||
}
|
||||
|
||||
|
||||
ChatModel = {
|
||||
"OpenAI": GptTurbo,
|
||||
"智谱AI": ZhipuChat,
|
||||
"通义千问": QWenChat,
|
||||
"ZHIPU-AI": ZhipuChat,
|
||||
"Tongyi-Qianwen": QWenChat,
|
||||
"Local": LocalLLM,
|
||||
"Moonshot": MoonshotChat
|
||||
}
|
||||
|
||||
@ -194,7 +194,7 @@ class Dealer:
|
||||
return [float(t) for t in txt.split("\t")]
|
||||
|
||||
def insert_citations(self, answer, chunks, chunk_v,
|
||||
embd_mdl, tkweight=0.7, vtweight=0.3):
|
||||
embd_mdl, tkweight=0.1, vtweight=0.9):
|
||||
assert len(chunks) == len(chunk_v)
|
||||
pieces = re.split(r"(```)", answer)
|
||||
if len(pieces) >= 3:
|
||||
@ -243,7 +243,7 @@ class Dealer:
|
||||
chunks_tks,
|
||||
tkweight, vtweight)
|
||||
mx = np.max(sim) * 0.99
|
||||
if mx < 0.7:
|
||||
if mx < 0.65:
|
||||
continue
|
||||
cites[idx[i]] = list(
|
||||
set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
|
||||
|
||||
@ -84,6 +84,7 @@ def dispatch():
|
||||
pages = PdfParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"]))
|
||||
page_size = 5
|
||||
if r["parser_id"] == "paper": page_size = 12
|
||||
if r["parser_id"] == "one": page_size = 1000000000
|
||||
for s,e in r["parser_config"].get("pages", [(0,100000)]):
|
||||
e = min(e, pages)
|
||||
for p in range(s, e, page_size):
|
||||
|
||||
@ -39,7 +39,7 @@ from rag.nlp import search
|
||||
from io import BytesIO
|
||||
import pandas as pd
|
||||
|
||||
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive
|
||||
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one
|
||||
|
||||
from api.db import LLMType, ParserType
|
||||
from api.db.services.document_service import DocumentService
|
||||
@ -60,6 +60,7 @@ FACTORY = {
|
||||
ParserType.TABLE.value: table,
|
||||
ParserType.RESUME.value: resume,
|
||||
ParserType.PICTURE.value: picture,
|
||||
ParserType.ONE.value: one,
|
||||
}
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user