solve task execution issues (#90)
This commit is contained in:
parent
7f174fb9d3
commit
8a726fb04b
@ -236,9 +236,12 @@ def run():
|
|||||||
try:
|
try:
|
||||||
for id in req["doc_ids"]:
|
for id in req["doc_ids"]:
|
||||||
info = {"run": str(req["run"]), "progress": 0}
|
info = {"run": str(req["run"]), "progress": 0}
|
||||||
if str(req["run"]) == TaskStatus.RUNNING.value:info["progress_msg"] = ""
|
if str(req["run"]) == TaskStatus.RUNNING.value:
|
||||||
|
info["progress_msg"] = ""
|
||||||
|
info["chunk_num"] = 0
|
||||||
|
info["token_num"] = 0
|
||||||
DocumentService.update_by_id(id, info)
|
DocumentService.update_by_id(id, info)
|
||||||
if str(req["run"]) == TaskStatus.CANCEL.value:
|
#if str(req["run"]) == TaskStatus.CANCEL.value:
|
||||||
tenant_id = DocumentService.get_tenant_id(id)
|
tenant_id = DocumentService.get_tenant_id(id)
|
||||||
if not tenant_id:
|
if not tenant_id:
|
||||||
return get_data_error_result(retmsg="Tenant not found!")
|
return get_data_error_result(retmsg="Tenant not found!")
|
||||||
@ -311,13 +314,17 @@ def change_parser():
|
|||||||
if doc.type == FileType.VISUAL or re.search(r"\.(ppt|pptx|pages)$", doc.name):
|
if doc.type == FileType.VISUAL or re.search(r"\.(ppt|pptx|pages)$", doc.name):
|
||||||
return get_data_error_result(retmsg="Not supported yet!")
|
return get_data_error_result(retmsg="Not supported yet!")
|
||||||
|
|
||||||
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress":0, "progress_msg": ""})
|
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress":0, "progress_msg": "", "run": "0"})
|
||||||
if not e:
|
if not e:
|
||||||
return get_data_error_result(retmsg="Document not found!")
|
return get_data_error_result(retmsg="Document not found!")
|
||||||
if doc.token_num>0:
|
if doc.token_num>0:
|
||||||
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num*-1, doc.chunk_num*-1, doc.process_duation*-1)
|
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num*-1, doc.chunk_num*-1, doc.process_duation*-1)
|
||||||
if not e:
|
if not e:
|
||||||
return get_data_error_result(retmsg="Document not found!")
|
return get_data_error_result(retmsg="Document not found!")
|
||||||
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
||||||
|
if not tenant_id:
|
||||||
|
return get_data_error_result(retmsg="Tenant not found!")
|
||||||
|
ELASTICSEARCH.deleteByQuery(Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
|
||||||
|
|
||||||
return get_json_result(data=True)
|
return get_json_result(data=True)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
|||||||
@ -65,7 +65,7 @@ class TaskService(CommonService):
|
|||||||
try:
|
try:
|
||||||
task = cls.model.get_by_id(id)
|
task = cls.model.get_by_id(id)
|
||||||
_, doc = DocumentService.get_by_id(task.doc_id)
|
_, doc = DocumentService.get_by_id(task.doc_id)
|
||||||
return doc.run == TaskStatus.CANCEL.value
|
return doc.run == TaskStatus.CANCEL.value or doc.progress < 0
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
pass
|
pass
|
||||||
return True
|
return True
|
||||||
|
|||||||
@ -98,15 +98,6 @@ PROXY_PROTOCOL = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("protocol")
|
|||||||
|
|
||||||
DATABASE = decrypt_database_config(name="mysql")
|
DATABASE = decrypt_database_config(name="mysql")
|
||||||
|
|
||||||
# Logger
|
|
||||||
LoggerFactory.set_directory(os.path.join(get_project_base_directory(), "logs", "api"))
|
|
||||||
# {CRITICAL: 50, FATAL:50, ERROR:40, WARNING:30, WARN:30, INFO:20, DEBUG:10, NOTSET:0}
|
|
||||||
LoggerFactory.LEVEL = 10
|
|
||||||
|
|
||||||
stat_logger = getLogger("stat")
|
|
||||||
access_logger = getLogger("access")
|
|
||||||
database_logger = getLogger("database")
|
|
||||||
|
|
||||||
# Switch
|
# Switch
|
||||||
# upload
|
# upload
|
||||||
UPLOAD_DATA_FROM_CLIENT = True
|
UPLOAD_DATA_FROM_CLIENT = True
|
||||||
@ -144,6 +135,15 @@ CHECK_NODES_IDENTITY = False
|
|||||||
|
|
||||||
retrievaler = search.Dealer(ELASTICSEARCH)
|
retrievaler = search.Dealer(ELASTICSEARCH)
|
||||||
|
|
||||||
|
# Logger
|
||||||
|
LoggerFactory.set_directory(os.path.join(get_project_base_directory(), "logs", "api"))
|
||||||
|
# {CRITICAL: 50, FATAL:50, ERROR:40, WARNING:30, WARN:30, INFO:20, DEBUG:10, NOTSET:0}
|
||||||
|
LoggerFactory.LEVEL = 10
|
||||||
|
|
||||||
|
stat_logger = getLogger("stat")
|
||||||
|
access_logger = getLogger("access")
|
||||||
|
database_logger = getLogger("database")
|
||||||
|
|
||||||
class CustomEnum(Enum):
|
class CustomEnum(Enum):
|
||||||
@classmethod
|
@classmethod
|
||||||
def valid(cls, value):
|
def valid(cls, value):
|
||||||
|
|||||||
@ -8,7 +8,7 @@ import torch
|
|||||||
import re
|
import re
|
||||||
import pdfplumber
|
import pdfplumber
|
||||||
import logging
|
import logging
|
||||||
from PIL import Image
|
from PIL import Image, ImageDraw
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from api.db import ParserType
|
from api.db import ParserType
|
||||||
@ -930,13 +930,25 @@ class HuParser:
|
|||||||
|
|
||||||
def crop(self, text, ZM=3):
|
def crop(self, text, ZM=3):
|
||||||
imgs = []
|
imgs = []
|
||||||
|
poss = []
|
||||||
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", text):
|
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", text):
|
||||||
pn, left, right, top, bottom = tag.strip(
|
pn, left, right, top, bottom = tag.strip(
|
||||||
"#").strip("@").split("\t")
|
"#").strip("@").split("\t")
|
||||||
left, right, top, bottom = float(left), float(
|
left, right, top, bottom = float(left), float(
|
||||||
right), float(top), float(bottom)
|
right), float(top), float(bottom)
|
||||||
|
poss.append(([int(p) - 1 for p in pn.split("-")], left, right, top, bottom))
|
||||||
|
if not poss: return
|
||||||
|
|
||||||
|
max_width = np.max([right-left for (_, left, right, _, _) in poss])
|
||||||
|
GAP = 6
|
||||||
|
pos = poss[0]
|
||||||
|
poss.insert(0, ([pos[0][0]], pos[1], pos[2], max(0, pos[3]-120), max(pos[3]-GAP, 0)))
|
||||||
|
pos = poss[-1]
|
||||||
|
poss.append(([pos[0][-1]], pos[1], pos[2], min(self.page_images[pos[0][-1]].size[1]/ZM, pos[4]+GAP), min(self.page_images[pos[0][-1]].size[1]/ZM, pos[4]+120)))
|
||||||
|
|
||||||
|
for ii, (pns, left, right, top, bottom) in enumerate(poss):
|
||||||
|
right = left + max_width
|
||||||
bottom *= ZM
|
bottom *= ZM
|
||||||
pns = [int(p) - 1 for p in pn.split("-")]
|
|
||||||
for pn in pns[1:]:
|
for pn in pns[1:]:
|
||||||
bottom += self.page_images[pn - 1].size[1]
|
bottom += self.page_images[pn - 1].size[1]
|
||||||
imgs.append(
|
imgs.append(
|
||||||
@ -959,16 +971,21 @@ class HuParser:
|
|||||||
|
|
||||||
if not imgs:
|
if not imgs:
|
||||||
return
|
return
|
||||||
GAP = 2
|
|
||||||
height = 0
|
height = 0
|
||||||
for img in imgs:
|
for img in imgs:
|
||||||
height += img.size[1] + GAP
|
height += img.size[1] + GAP
|
||||||
height = int(height)
|
height = int(height)
|
||||||
|
width = int(np.max([i.size[0] for i in imgs]))
|
||||||
pic = Image.new("RGB",
|
pic = Image.new("RGB",
|
||||||
(int(np.max([i.size[0] for i in imgs])), height),
|
(width, height),
|
||||||
(245, 245, 245))
|
(245, 245, 245))
|
||||||
height = 0
|
height = 0
|
||||||
for img in imgs:
|
for ii, img in enumerate(imgs):
|
||||||
|
if ii == 0 or ii + 1 == len(imgs):
|
||||||
|
img = img.convert('RGBA')
|
||||||
|
overlay = Image.new('RGBA', img.size, (0, 0, 0, 0))
|
||||||
|
overlay.putalpha(128)
|
||||||
|
img = Image.alpha_composite(img, overlay).convert("RGB")
|
||||||
pic.paste(img, (0, int(height)))
|
pic.paste(img, (0, int(height)))
|
||||||
height += img.size[1] + GAP
|
height += img.size[1] + GAP
|
||||||
return pic
|
return pic
|
||||||
|
|||||||
@ -34,7 +34,7 @@ class LayoutRecognizer(Recognizer):
|
|||||||
"Equation",
|
"Equation",
|
||||||
]
|
]
|
||||||
def __init__(self, domain):
|
def __init__(self, domain):
|
||||||
super().__init__(self.labels, domain) #, os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
super().__init__(self.labels, domain, os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
||||||
|
|
||||||
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16):
|
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16):
|
||||||
def __is_garbage(b):
|
def __is_garbage(b):
|
||||||
|
|||||||
@ -33,7 +33,7 @@ class TableStructureRecognizer(Recognizer):
|
|||||||
]
|
]
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__(self.labels, "tsr")#,os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
super().__init__(self.labels, "tsr",os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
||||||
|
|
||||||
def __call__(self, images, thr=0.2):
|
def __call__(self, images, thr=0.2):
|
||||||
tbls = super().__call__(images, thr)
|
tbls = super().__call__(images, thr)
|
||||||
|
|||||||
@ -13,7 +13,7 @@
|
|||||||
import copy
|
import copy
|
||||||
import re
|
import re
|
||||||
from rag.nlp import bullets_category, is_english, tokenize, remove_contents_table, \
|
from rag.nlp import bullets_category, is_english, tokenize, remove_contents_table, \
|
||||||
hierarchical_merge, make_colon_as_title, naive_merge, random_choices
|
hierarchical_merge, make_colon_as_title, naive_merge, random_choices, tokenize_table
|
||||||
from rag.nlp import huqie
|
from rag.nlp import huqie
|
||||||
from deepdoc.parser import PdfParser, DocxParser
|
from deepdoc.parser import PdfParser, DocxParser
|
||||||
|
|
||||||
@ -90,25 +90,16 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
|||||||
make_colon_as_title(sections)
|
make_colon_as_title(sections)
|
||||||
bull = bullets_category([t for t in random_choices([t for t,_ in sections], k=100)])
|
bull = bullets_category([t for t in random_choices([t for t,_ in sections], k=100)])
|
||||||
if bull >= 0: cks = hierarchical_merge(bull, sections, 3)
|
if bull >= 0: cks = hierarchical_merge(bull, sections, 3)
|
||||||
else: cks = naive_merge(sections, kwargs.get("chunk_token_num", 256), kwargs.get("delimer", "\n。;!?"))
|
else:
|
||||||
|
sections = [s.split("@") for s in sections]
|
||||||
|
sections = [(pr[0], "@"+pr[1]) for pr in sections if len(pr)==2]
|
||||||
|
cks = naive_merge(sections, kwargs.get("chunk_token_num", 256), kwargs.get("delimer", "\n。;!?"))
|
||||||
|
|
||||||
sections = [t for t, _ in sections]
|
|
||||||
# is it English
|
# is it English
|
||||||
eng = lang.lower() == "english"#is_english(random_choices(sections, k=218))
|
eng = lang.lower() == "english"#is_english(random_choices([t for t, _ in sections], k=218))
|
||||||
|
|
||||||
|
res = tokenize_table(tbls, doc, eng)
|
||||||
|
|
||||||
res = []
|
|
||||||
# add tables
|
|
||||||
for img, rows in tbls:
|
|
||||||
bs = 10
|
|
||||||
de = ";" if eng else ";"
|
|
||||||
for i in range(0, len(rows), bs):
|
|
||||||
d = copy.deepcopy(doc)
|
|
||||||
r = de.join(rows[i:i + bs])
|
|
||||||
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
|
|
||||||
tokenize(d, r, eng)
|
|
||||||
d["image"] = img
|
|
||||||
res.append(d)
|
|
||||||
print("TABLE", d["content_with_weight"])
|
|
||||||
# wrap up to es documents
|
# wrap up to es documents
|
||||||
for ck in cks:
|
for ck in cks:
|
||||||
d = copy.deepcopy(doc)
|
d = copy.deepcopy(doc)
|
||||||
|
|||||||
@ -2,7 +2,7 @@ import copy
|
|||||||
import re
|
import re
|
||||||
|
|
||||||
from api.db import ParserType
|
from api.db import ParserType
|
||||||
from rag.nlp import huqie, tokenize
|
from rag.nlp import huqie, tokenize, tokenize_table
|
||||||
from deepdoc.parser import PdfParser
|
from deepdoc.parser import PdfParser
|
||||||
from rag.utils import num_tokens_from_string
|
from rag.utils import num_tokens_from_string
|
||||||
|
|
||||||
@ -81,18 +81,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
|||||||
# is it English
|
# is it English
|
||||||
eng = lang.lower() == "english"#pdf_parser.is_english
|
eng = lang.lower() == "english"#pdf_parser.is_english
|
||||||
|
|
||||||
res = []
|
res = tokenize_table(tbls, doc, eng)
|
||||||
# add tables
|
|
||||||
for img, rows in tbls:
|
|
||||||
bs = 10
|
|
||||||
de = ";" if eng else ";"
|
|
||||||
for i in range(0, len(rows), bs):
|
|
||||||
d = copy.deepcopy(doc)
|
|
||||||
r = de.join(rows[i:i + bs])
|
|
||||||
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
|
|
||||||
tokenize(d, r, eng)
|
|
||||||
d["image"] = img
|
|
||||||
res.append(d)
|
|
||||||
|
|
||||||
i = 0
|
i = 0
|
||||||
chunk = []
|
chunk = []
|
||||||
|
|||||||
@ -13,7 +13,7 @@
|
|||||||
import copy
|
import copy
|
||||||
import re
|
import re
|
||||||
from rag.app import laws
|
from rag.app import laws
|
||||||
from rag.nlp import huqie, is_english, tokenize, naive_merge
|
from rag.nlp import huqie, is_english, tokenize, naive_merge, tokenize_table
|
||||||
from deepdoc.parser import PdfParser
|
from deepdoc.parser import PdfParser
|
||||||
from rag.settings import cron_logger
|
from rag.settings import cron_logger
|
||||||
|
|
||||||
@ -72,17 +72,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
|||||||
pdf_parser = Pdf()
|
pdf_parser = Pdf()
|
||||||
sections, tbls = pdf_parser(filename if not binary else binary,
|
sections, tbls = pdf_parser(filename if not binary else binary,
|
||||||
from_page=from_page, to_page=to_page, callback=callback)
|
from_page=from_page, to_page=to_page, callback=callback)
|
||||||
# add tables
|
res = tokenize_table(tbls, doc, eng)
|
||||||
for img, rows in tbls:
|
|
||||||
bs = 10
|
|
||||||
de = ";" if eng else ";"
|
|
||||||
for i in range(0, len(rows), bs):
|
|
||||||
d = copy.deepcopy(doc)
|
|
||||||
r = de.join(rows[i:i + bs])
|
|
||||||
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
|
|
||||||
tokenize(d, r, eng)
|
|
||||||
d["image"] = img
|
|
||||||
res.append(d)
|
|
||||||
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
||||||
callback(0.1, "Start to parse.")
|
callback(0.1, "Start to parse.")
|
||||||
txt = ""
|
txt = ""
|
||||||
@ -106,6 +96,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
|||||||
# wrap up to es documents
|
# wrap up to es documents
|
||||||
for ck in cks:
|
for ck in cks:
|
||||||
print("--", ck)
|
print("--", ck)
|
||||||
|
if not ck:continue
|
||||||
d = copy.deepcopy(doc)
|
d = copy.deepcopy(doc)
|
||||||
if pdf_parser:
|
if pdf_parser:
|
||||||
d["image"] = pdf_parser.crop(ck)
|
d["image"] = pdf_parser.crop(ck)
|
||||||
|
|||||||
@ -15,7 +15,7 @@ import re
|
|||||||
from collections import Counter
|
from collections import Counter
|
||||||
|
|
||||||
from api.db import ParserType
|
from api.db import ParserType
|
||||||
from rag.nlp import huqie, tokenize
|
from rag.nlp import huqie, tokenize, tokenize_table
|
||||||
from deepdoc.parser import PdfParser
|
from deepdoc.parser import PdfParser
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from rag.utils import num_tokens_from_string
|
from rag.utils import num_tokens_from_string
|
||||||
@ -158,18 +158,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
|||||||
eng = lang.lower() == "english"#pdf_parser.is_english
|
eng = lang.lower() == "english"#pdf_parser.is_english
|
||||||
print("It's English.....", eng)
|
print("It's English.....", eng)
|
||||||
|
|
||||||
res = []
|
res = tokenize_table(paper["tables"], doc, eng)
|
||||||
# add tables
|
|
||||||
for img, rows in paper["tables"]:
|
|
||||||
bs = 10
|
|
||||||
de = ";" if eng else ";"
|
|
||||||
for i in range(0, len(rows), bs):
|
|
||||||
d = copy.deepcopy(doc)
|
|
||||||
r = de.join(rows[i:i + bs])
|
|
||||||
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
|
|
||||||
tokenize(d, r)
|
|
||||||
d["image"] = img
|
|
||||||
res.append(d)
|
|
||||||
|
|
||||||
if paper["abstract"]:
|
if paper["abstract"]:
|
||||||
d = copy.deepcopy(doc)
|
d = copy.deepcopy(doc)
|
||||||
|
|||||||
@ -20,7 +20,7 @@ from deepdoc.parser import PdfParser, PptParser
|
|||||||
|
|
||||||
class Ppt(PptParser):
|
class Ppt(PptParser):
|
||||||
def __call__(self, fnm, from_page, to_page, callback=None):
|
def __call__(self, fnm, from_page, to_page, callback=None):
|
||||||
txts = super.__call__(fnm, from_page, to_page)
|
txts = super().__call__(fnm, from_page, to_page)
|
||||||
|
|
||||||
callback(0.5, "Text extraction finished.")
|
callback(0.5, "Text extraction finished.")
|
||||||
import aspose.slides as slides
|
import aspose.slides as slides
|
||||||
|
|||||||
@ -79,7 +79,7 @@ def chunk(filename, binary=None, callback=None, **kwargs):
|
|||||||
resume = remote_call(filename, binary)
|
resume = remote_call(filename, binary)
|
||||||
if len(resume.keys()) < 7:
|
if len(resume.keys()) < 7:
|
||||||
callback(-1, "Resume is not successfully parsed.")
|
callback(-1, "Resume is not successfully parsed.")
|
||||||
return []
|
raise Exception("Resume parser remote call fail!")
|
||||||
callback(0.6, "Done parsing. Chunking...")
|
callback(0.6, "Done parsing. Chunking...")
|
||||||
print(json.dumps(resume, ensure_ascii=False, indent=2))
|
print(json.dumps(resume, ensure_ascii=False, indent=2))
|
||||||
|
|
||||||
|
|||||||
@ -1,4 +1,4 @@
|
|||||||
|
import copy
|
||||||
|
|
||||||
from nltk.stem import PorterStemmer
|
from nltk.stem import PorterStemmer
|
||||||
stemmer = PorterStemmer()
|
stemmer = PorterStemmer()
|
||||||
@ -80,6 +80,20 @@ def tokenize(d, t, eng):
|
|||||||
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
||||||
|
|
||||||
|
|
||||||
|
def tokenize_table(tbls, doc, eng, batch_size=10):
|
||||||
|
res = []
|
||||||
|
# add tables
|
||||||
|
for img, rows in tbls:
|
||||||
|
de = "; " if eng else "; "
|
||||||
|
for i in range(0, len(rows), batch_size):
|
||||||
|
d = copy.deepcopy(doc)
|
||||||
|
r = de.join(rows[i:i + batch_size])
|
||||||
|
tokenize(d, r, eng)
|
||||||
|
d["image"] = img
|
||||||
|
res.append(d)
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
def remove_contents_table(sections, eng=False):
|
def remove_contents_table(sections, eng=False):
|
||||||
i = 0
|
i = 0
|
||||||
while i < len(sections):
|
while i < len(sections):
|
||||||
@ -201,10 +215,12 @@ def naive_merge(sections, chunk_token_num=128, delimiter="\n。;!?"):
|
|||||||
tnum = num_tokens_from_string(t)
|
tnum = num_tokens_from_string(t)
|
||||||
if tnum < 8: pos = ""
|
if tnum < 8: pos = ""
|
||||||
if tk_nums[-1] > chunk_token_num:
|
if tk_nums[-1] > chunk_token_num:
|
||||||
cks.append(t + pos)
|
if t.find(pos) < 0: t += pos
|
||||||
|
cks.append(t)
|
||||||
tk_nums.append(tnum)
|
tk_nums.append(tnum)
|
||||||
else:
|
else:
|
||||||
cks[-1] += t + pos
|
if cks[-1].find(pos) < 0: t += pos
|
||||||
|
cks[-1] += t
|
||||||
tk_nums[-1] += tnum
|
tk_nums[-1] += tnum
|
||||||
|
|
||||||
for sec, pos in sections:
|
for sec, pos in sections:
|
||||||
|
|||||||
@ -1,6 +1,8 @@
|
|||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
import json
|
import json
|
||||||
import re
|
import re
|
||||||
|
from copy import deepcopy
|
||||||
|
|
||||||
from elasticsearch_dsl import Q, Search
|
from elasticsearch_dsl import Q, Search
|
||||||
from typing import List, Optional, Dict, Union
|
from typing import List, Optional, Dict, Union
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
@ -98,7 +100,7 @@ class Dealer:
|
|||||||
del s["highlight"]
|
del s["highlight"]
|
||||||
q_vec = s["knn"]["query_vector"]
|
q_vec = s["knn"]["query_vector"]
|
||||||
es_logger.info("【Q】: {}".format(json.dumps(s)))
|
es_logger.info("【Q】: {}".format(json.dumps(s)))
|
||||||
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
|
res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src)
|
||||||
es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
|
es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
|
||||||
if self.es.getTotal(res) == 0 and "knn" in s:
|
if self.es.getTotal(res) == 0 and "knn" in s:
|
||||||
bqry, _ = self.qryr.question(qst, min_match="10%")
|
bqry, _ = self.qryr.question(qst, min_match="10%")
|
||||||
|
|||||||
@ -90,7 +90,7 @@ def dispatch():
|
|||||||
tsks.append(task)
|
tsks.append(task)
|
||||||
else:
|
else:
|
||||||
tsks.append(new_task())
|
tsks.append(new_task())
|
||||||
print(tsks)
|
|
||||||
bulk_insert_into_db(Task, tsks, True)
|
bulk_insert_into_db(Task, tsks, True)
|
||||||
set_dispatching(r["id"])
|
set_dispatching(r["id"])
|
||||||
tmf.write(str(r["update_time"]) + "\n")
|
tmf.write(str(r["update_time"]) + "\n")
|
||||||
|
|||||||
@ -114,7 +114,7 @@ def build(row):
|
|||||||
kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
|
kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
if re.search("(No such file|not found)", str(e)):
|
if re.search("(No such file|not found)", str(e)):
|
||||||
callback(-1, "Can not find file <%s>" % row["doc_name"])
|
callback(-1, "Can not find file <%s>" % row["name"])
|
||||||
else:
|
else:
|
||||||
callback(-1, f"Internal server error: %s" %
|
callback(-1, f"Internal server error: %s" %
|
||||||
str(e).replace("'", ""))
|
str(e).replace("'", ""))
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user