support snapshot download from local (#153)
* support snapshot download from local * let snapshot download from local
This commit is contained in:
parent
da21320b88
commit
979b3a5b4b
12
README.md
12
README.md
@ -1,5 +1,5 @@
|
||||
<div align="center">
|
||||
<a href="https://ragflow.io/">
|
||||
<a href="https://demo.ragflow.io/">
|
||||
<img src="https://github.com/infiniflow/ragflow/assets/12318111/f034fb27-b3bf-401b-b213-e1dfa7448d2a" width="320" alt="ragflow logo">
|
||||
</a>
|
||||
</div>
|
||||
@ -11,7 +11,7 @@
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://ragflow.io" target="_blank">
|
||||
<a href="https://demo.ragflow.io" target="_blank">
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/RAGFLOW-LLM-white?&labelColor=dd0af7"></a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/badge/docker_pull-ragflow:v1.0-brightgreen"
|
||||
@ -21,7 +21,7 @@
|
||||
</a>
|
||||
</p>
|
||||
|
||||
[RagFlow](http://ragflow.io) is a knowledge management platform built on custom-build document understanding engine and LLM,
|
||||
[RagFlow](http://demo.ragflow.io) is a knowledge management platform built on custom-build document understanding engine and LLM,
|
||||
with reasoned and well-founded answers to your question. Clone this repository, you can deploy your own knowledge management
|
||||
platform to empower your business with AI.
|
||||
|
||||
@ -119,6 +119,12 @@ Open your browser, enter the IP address of your server, _**Hallelujah**_ again!
|
||||
> The default serving port is 80, if you want to change that, please refer to [docker-compose.yml](./docker-compose.yaml),
|
||||
> and change the left part of *'80:80'*'.
|
||||
|
||||
# System Architecture Diagram
|
||||
|
||||
<div align="center" style="margin-top:20px;margin-bottom:20px;">
|
||||
<img src="https://github.com/infiniflow/ragflow/assets/12318111/39c8e546-51ca-4b50-a1da-83731b540cd0" width="1000"/>
|
||||
</div>
|
||||
|
||||
# Configuration
|
||||
If you need to change the default setting of the system when you deploy it. There several ways to configure it.
|
||||
Please refer to [README](./docker/README.md) and manually set the configuration.
|
||||
|
||||
@ -320,8 +320,13 @@ def use_sql(question, field_map, tenant_id, chat_mdl):
|
||||
rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
|
||||
docid_idx = list(docid_idx)[0]
|
||||
docnm_idx = list(docnm_idx)[0]
|
||||
doc_aggs = {}
|
||||
for r in tbl["rows"]:
|
||||
if r[docid_idx] not in doc_aggs:
|
||||
doc_aggs[r[docid_idx]] = {"doc_name": r[docnm_idx], "count": 0}
|
||||
doc_aggs[r[docid_idx]]["count"] += 1
|
||||
return {
|
||||
"answer": "\n".join([clmns, line, rows]),
|
||||
"reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]],
|
||||
"doc_aggs": [{"doc_id": r[docid_idx], "doc_name": r[docnm_idx], "count": 1} for r in tbl["rows"]]}
|
||||
"doc_aggs":[{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in doc_aggs.items()]}
|
||||
}
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import os
|
||||
import random
|
||||
|
||||
import fitz
|
||||
@ -12,10 +13,12 @@ from PIL import Image, ImageDraw
|
||||
import numpy as np
|
||||
|
||||
from PyPDF2 import PdfReader as pdf2_read
|
||||
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
from deepdoc.vision import OCR, Recognizer, LayoutRecognizer, TableStructureRecognizer
|
||||
from rag.nlp import huqie
|
||||
from copy import deepcopy
|
||||
from huggingface_hub import hf_hub_download
|
||||
from huggingface_hub import hf_hub_download, snapshot_download
|
||||
|
||||
logging.getLogger("pdfminer").setLevel(logging.WARNING)
|
||||
|
||||
@ -32,8 +35,17 @@ class HuParser:
|
||||
self.updown_cnt_mdl = xgb.Booster()
|
||||
if torch.cuda.is_available():
|
||||
self.updown_cnt_mdl.set_param({"device": "cuda"})
|
||||
self.updown_cnt_mdl.load_model(hf_hub_download(repo_id="InfiniFlow/text_concat_xgb_v1.0",
|
||||
filename="updown_concat_xgb.model"))
|
||||
try:
|
||||
model_dir = snapshot_download(
|
||||
repo_id="InfiniFlow/text_concat_xgb_v1.0",
|
||||
local_dir=os.path.join(
|
||||
get_project_base_directory(),
|
||||
"rag/res/deepdoc"),
|
||||
local_files_only=True)
|
||||
except Exception as e:
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/text_concat_xgb_v1.0")
|
||||
|
||||
self.updown_cnt_mdl.load_model(os.path.join(model_dir, "updown_concat_xgb.model"))
|
||||
self.page_from = 0
|
||||
"""
|
||||
If you have trouble downloading HuggingFace models, -_^ this might help!!
|
||||
|
||||
@ -37,7 +37,16 @@ class LayoutRecognizer(Recognizer):
|
||||
"Equation",
|
||||
]
|
||||
def __init__(self, domain):
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
|
||||
try:
|
||||
model_dir = snapshot_download(
|
||||
repo_id="InfiniFlow/deepdoc",
|
||||
local_dir=os.path.join(
|
||||
get_project_base_directory(),
|
||||
"rag/res/deepdoc"),
|
||||
local_files_only=True)
|
||||
except Exception as e:
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
|
||||
|
||||
super().__init__(self.labels, domain, model_dir)#os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
||||
self.garbage_layouts = ["footer", "header", "reference"]
|
||||
|
||||
|
||||
@ -14,6 +14,10 @@
|
||||
import copy
|
||||
import time
|
||||
import os
|
||||
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
from .operators import *
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
@ -21,6 +25,7 @@ import onnxruntime as ort
|
||||
from .postprocess import build_post_process
|
||||
from rag.settings import cron_logger
|
||||
|
||||
|
||||
def transform(data, ops=None):
|
||||
""" transform """
|
||||
if ops is None:
|
||||
@ -66,9 +71,15 @@ def load_model(model_dir, nm):
|
||||
options.intra_op_num_threads = 2
|
||||
options.inter_op_num_threads = 2
|
||||
if False and ort.get_device() == "GPU":
|
||||
sess = ort.InferenceSession(model_file_path, options=options, providers=['CUDAExecutionProvider'])
|
||||
sess = ort.InferenceSession(
|
||||
model_file_path,
|
||||
options=options,
|
||||
providers=['CUDAExecutionProvider'])
|
||||
else:
|
||||
sess = ort.InferenceSession(model_file_path, options=options, providers=['CPUExecutionProvider'])
|
||||
sess = ort.InferenceSession(
|
||||
model_file_path,
|
||||
options=options,
|
||||
providers=['CPUExecutionProvider'])
|
||||
return sess, sess.get_inputs()[0]
|
||||
|
||||
|
||||
@ -331,7 +342,8 @@ class TextRecognizer(object):
|
||||
outputs = self.predictor.run(None, input_dict)
|
||||
break
|
||||
except Exception as e:
|
||||
if i >= 3: raise e
|
||||
if i >= 3:
|
||||
raise e
|
||||
time.sleep(5)
|
||||
preds = outputs[0]
|
||||
rec_result = self.postprocess_op(preds)
|
||||
@ -442,7 +454,8 @@ class TextDetector(object):
|
||||
outputs = self.predictor.run(None, input_dict)
|
||||
break
|
||||
except Exception as e:
|
||||
if i >= 3: raise e
|
||||
if i >= 3:
|
||||
raise e
|
||||
time.sleep(5)
|
||||
|
||||
post_result = self.postprocess_op({"maps": outputs[0]}, shape_list)
|
||||
@ -466,7 +479,15 @@ class OCR(object):
|
||||
|
||||
"""
|
||||
if not model_dir:
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
|
||||
try:
|
||||
model_dir = snapshot_download(
|
||||
repo_id="InfiniFlow/deepdoc",
|
||||
local_dir=os.path.join(
|
||||
get_project_base_directory(),
|
||||
"rag/res/deepdoc"),
|
||||
local_files_only=True)
|
||||
except Exception as e:
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
|
||||
|
||||
self.text_detector = TextDetector(model_dir)
|
||||
self.text_recognizer = TextRecognizer(model_dir)
|
||||
@ -548,14 +569,16 @@ class OCR(object):
|
||||
cron_logger.debug("dt_boxes num : {}, elapsed : {}".format(
|
||||
len(dt_boxes), elapse))
|
||||
|
||||
return zip(self.sorted_boxes(dt_boxes), [("",0) for _ in range(len(dt_boxes))])
|
||||
return zip(self.sorted_boxes(dt_boxes), [
|
||||
("", 0) for _ in range(len(dt_boxes))])
|
||||
|
||||
def recognize(self, ori_im, box):
|
||||
img_crop = self.get_rotate_crop_image(ori_im, box)
|
||||
|
||||
rec_res, elapse = self.text_recognizer([img_crop])
|
||||
text, score = rec_res[0]
|
||||
if score < self.drop_score:return ""
|
||||
if score < self.drop_score:
|
||||
return ""
|
||||
return text
|
||||
|
||||
def __call__(self, img, cls=True):
|
||||
@ -600,8 +623,7 @@ class OCR(object):
|
||||
end = time.time()
|
||||
time_dict['all'] = end - start
|
||||
|
||||
|
||||
#for bno in range(len(img_crop_list)):
|
||||
# for bno in range(len(img_crop_list)):
|
||||
# print(f"{bno}, {rec_res[bno]}")
|
||||
|
||||
return list(zip([a.tolist() for a in filter_boxes], filter_rec_res))
|
||||
|
||||
@ -17,6 +17,7 @@ from copy import deepcopy
|
||||
import onnxruntime as ort
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
from .operators import *
|
||||
from rag.settings import cron_logger
|
||||
|
||||
@ -35,7 +36,15 @@ class Recognizer(object):
|
||||
|
||||
"""
|
||||
if not model_dir:
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
|
||||
try:
|
||||
model_dir = snapshot_download(
|
||||
repo_id="InfiniFlow/deepdoc",
|
||||
local_dir=os.path.join(
|
||||
get_project_base_directory(),
|
||||
"rag/res/deepdoc"),
|
||||
local_files_only=True)
|
||||
except Exception as e:
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
|
||||
|
||||
model_file_path = os.path.join(model_dir, task_name + ".onnx")
|
||||
if not os.path.exists(model_file_path):
|
||||
|
||||
@ -34,7 +34,16 @@ class TableStructureRecognizer(Recognizer):
|
||||
]
|
||||
|
||||
def __init__(self):
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
|
||||
try:
|
||||
model_dir = snapshot_download(
|
||||
repo_id="InfiniFlow/deepdoc",
|
||||
local_dir=os.path.join(
|
||||
get_project_base_directory(),
|
||||
"rag/res/deepdoc"),
|
||||
local_files_only=True)
|
||||
except Exception as e:
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
|
||||
|
||||
super().__init__(self.labels, "tsr", model_dir)#os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
||||
|
||||
def __call__(self, images, thr=0.2):
|
||||
|
||||
@ -67,7 +67,7 @@ The serving IP and port inside the docker container. This is not updating until
|
||||
Newly signed-up users use LLM configured by this part. Otherwise, user need to configure his own LLM in *setting*.
|
||||
|
||||
### factory
|
||||
The LLM suppliers. '通义千问', "OpenAI" and "智谱AI" are supported.
|
||||
The LLM suppliers. 'Tongyi-Qianwen', "OpenAI", "Moonshot" and "ZHIPU-AI" are supported.
|
||||
|
||||
### api_key
|
||||
The corresponding API key of your assigned LLM vendor.
|
||||
|
||||
@ -29,7 +29,7 @@ function task_bro(){
|
||||
|
||||
task_bro &
|
||||
|
||||
WS=8
|
||||
WS=2
|
||||
for ((i=0;i<WS;i++))
|
||||
do
|
||||
task_exe $i $WS &
|
||||
|
||||
@ -16,7 +16,7 @@ minio:
|
||||
es:
|
||||
hosts: 'http://es01:9200'
|
||||
user_default_llm:
|
||||
factory: '通义千问'
|
||||
factory: 'Tongyi-Qianwen'
|
||||
api_key: 'sk-xxxxxxxxxxxxx'
|
||||
oauth:
|
||||
github:
|
||||
|
||||
@ -13,6 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import os
|
||||
from abc import ABC
|
||||
|
||||
import dashscope
|
||||
@ -21,9 +22,21 @@ from FlagEmbedding import FlagModel
|
||||
import torch
|
||||
import numpy as np
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
from rag.utils import num_tokens_from_string
|
||||
|
||||
flag_model = FlagModel(snapshot_download("BAAI/bge-large-zh-v1.5", local_files_only=True),
|
||||
try:
|
||||
model_dir = snapshot_download(
|
||||
repo_id="BAAI/bge-large-zh-v1.5",
|
||||
local_dir=os.path.join(
|
||||
get_project_base_directory(),
|
||||
"rag/res/bge-large-zh-v1.5"),
|
||||
local_files_only=True)
|
||||
except Exception as e:
|
||||
model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5")
|
||||
|
||||
flag_model = FlagModel(model_dir,
|
||||
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
||||
use_fp16=torch.cuda.is_available())
|
||||
|
||||
|
||||
@ -172,7 +172,7 @@ def init_kb(row):
|
||||
def embedding(docs, mdl, parser_config={}, callback=None):
|
||||
batch_size = 32
|
||||
tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
|
||||
d["content_with_weight"] for d in docs]
|
||||
re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
|
||||
tk_count = 0
|
||||
if len(tts) == len(cnts):
|
||||
tts_ = np.array([])
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user