DOCS: add OpenAI-compatible http and python api reference (#5374)
### What problem does this PR solve? Add OpenAI-compatible http and python api reference ### Type of change - [x] Documentation Update --------- Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com> Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
This commit is contained in:
parent
a9e4695b74
commit
b3b341173f
@ -217,7 +217,7 @@ def chat_completion_openai_like(tenant_id, chat_id):
|
||||
model=model,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Who you are?"},
|
||||
{"role": "user", "content": "Who are you?"},
|
||||
{"role": "assistant", "content": "I am an AI assistant named..."},
|
||||
{"role": "user", "content": "Can you tell me how to install neovim"},
|
||||
],
|
||||
@ -236,14 +236,20 @@ def chat_completion_openai_like(tenant_id, chat_id):
|
||||
messages = req.get("messages", [])
|
||||
# To prevent empty [] input
|
||||
if len(messages) < 1:
|
||||
return get_error_data_result("You have to provide messages")
|
||||
return get_error_data_result("You have to provide messages.")
|
||||
if messages[-1]["role"] != "user":
|
||||
return get_error_data_result("The last content of this conversation is not from user.")
|
||||
|
||||
prompt = messages[-1]["content"]
|
||||
# Treat context tokens as reasoning tokens
|
||||
context_token_used = sum(len(message["content"]) for message in messages)
|
||||
|
||||
dia = DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value)
|
||||
if not dia:
|
||||
return get_error_data_result(f"You don't own the chat {chat_id}")
|
||||
dia = dia[0]
|
||||
|
||||
# Filter system and assistant messages
|
||||
# Filter system and non-sense assistant messages
|
||||
msg = None
|
||||
msg = [m for m in messages if m["role"] != "system" and (m["role"] != "assistant" or msg)]
|
||||
|
||||
@ -251,7 +257,7 @@ def chat_completion_openai_like(tenant_id, chat_id):
|
||||
# The value for the usage field on all chunks except for the last one will be null.
|
||||
# The usage field on the last chunk contains token usage statistics for the entire request.
|
||||
# The choices field on the last chunk will always be an empty array [].
|
||||
def streamed_respose_generator(chat_id, dia, msg):
|
||||
def streamed_response_generator(chat_id, dia, msg):
|
||||
token_used = 0
|
||||
response = {
|
||||
"id": f"chatcmpl-{chat_id}",
|
||||
@ -286,17 +292,17 @@ def chat_completion_openai_like(tenant_id, chat_id):
|
||||
response["choices"][0]["delta"]["content"] = "**ERROR**: " + str(e)
|
||||
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n".encode("utf-8")
|
||||
|
||||
# The last chunck
|
||||
# The last chunk
|
||||
response["choices"][0]["delta"]["content"] = None
|
||||
response["choices"][0]["finish_reason"] = "stop"
|
||||
response["usage"] = {
|
||||
"prompt_tokens": len(msg),
|
||||
"prompt_tokens": len(prompt),
|
||||
"completion_tokens": token_used,
|
||||
"total_tokens": len(msg) + token_used
|
||||
"total_tokens": len(prompt) + token_used
|
||||
}
|
||||
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n".encode("utf-8")
|
||||
|
||||
resp = Response(streamed_respose_generator(chat_id, dia, msg), mimetype="text/event-stream")
|
||||
resp = Response(streamed_response_generator(chat_id, dia, msg), mimetype="text/event-stream")
|
||||
resp.headers.add_header("Cache-control", "no-cache")
|
||||
resp.headers.add_header("Connection", "keep-alive")
|
||||
resp.headers.add_header("X-Accel-Buffering", "no")
|
||||
@ -308,6 +314,7 @@ def chat_completion_openai_like(tenant_id, chat_id):
|
||||
# focus answer content only
|
||||
answer = ans
|
||||
break
|
||||
content = answer["answer"]
|
||||
|
||||
response = {
|
||||
"id": f"chatcmpl-{chat_id}",
|
||||
@ -315,20 +322,20 @@ def chat_completion_openai_like(tenant_id, chat_id):
|
||||
"created": int(time.time()),
|
||||
"model": req.get("model", ""),
|
||||
"usage": {
|
||||
"prompt_tokens": len(messages),
|
||||
"completion_tokens": len(answer),
|
||||
"total_tokens": len(messages) + len(answer),
|
||||
"prompt_tokens": len(prompt),
|
||||
"completion_tokens": len(content),
|
||||
"total_tokens": len(prompt) + len(content),
|
||||
"completion_tokens_details": {
|
||||
"reasoning_tokens": len(answer),
|
||||
"accepted_prediction_tokens": len(answer),
|
||||
"rejected_prediction_tokens": len(answer)
|
||||
"reasoning_tokens": context_token_used,
|
||||
"accepted_prediction_tokens": len(content),
|
||||
"rejected_prediction_tokens": 0 # 0 for simplicity
|
||||
}
|
||||
},
|
||||
"choices": [
|
||||
{
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": answer["answer"]
|
||||
"content": content
|
||||
},
|
||||
"logprobs": None,
|
||||
"finish_reason": "stop",
|
||||
|
||||
@ -9,6 +9,154 @@ A complete reference for RAGFlow's RESTful API. Before proceeding, please ensure
|
||||
|
||||
---
|
||||
|
||||
## OpenAI-Compatible API
|
||||
|
||||
---
|
||||
|
||||
### Create chat completion
|
||||
|
||||
**POST** `/api/v1/chats_openai/{chat_id}/chat/completions`
|
||||
|
||||
Creates a model response for a given chat conversation.
|
||||
|
||||
This API follows the same request and response format as OpenAI's API. It allows you to interact with the model in a manner similar to how you would with [OpenAI's API](https://platform.openai.com/docs/api-reference/chat/create).
|
||||
|
||||
#### Request
|
||||
|
||||
- Method: POST
|
||||
- URL: `/api/v1/chats_openai/{chat_id}/chat/completions`
|
||||
- Headers:
|
||||
- `'content-Type: application/json'`
|
||||
- `'Authorization: Bearer <YOUR_API_KEY>'`
|
||||
- Body:
|
||||
- `"model"`: `string`
|
||||
- `"messages"`: `object list`
|
||||
- `"stream"`: `boolean`
|
||||
|
||||
##### Request example
|
||||
|
||||
```bash
|
||||
curl --request POST \
|
||||
--url http://{address}/api/v1/chats_openai/{chat_id}/chat/completions \
|
||||
--header 'Content-Type: application/json' \
|
||||
--header 'Authorization: Bearer <YOUR_API_KEY>' \
|
||||
--data '{
|
||||
"model": "model",
|
||||
"messages": [{"role": "user", "content": "Say this is a test!"}],
|
||||
"stream": true
|
||||
}'
|
||||
```
|
||||
|
||||
##### Request Parameters
|
||||
|
||||
- `model` (*Body parameter*) `string`, *Required*
|
||||
The model used to generate the response. The server will parse this automatically, so you can set it to any value for now.
|
||||
|
||||
- `messages` (*Body parameter*) `list[object]`, *Required*
|
||||
A list of historical chat messages used to generate the response. This must contain at least one message with the `user` role.
|
||||
|
||||
- `stream` (*Body parameter*) `boolean`
|
||||
Whether to receive the response as a stream. Set this to `false` explicitly if you prefer to receive the entire response in one go instead of as a stream.
|
||||
|
||||
#### Response
|
||||
|
||||
Stream:
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "chatcmpl-3a9c3572f29311efa69751e139332ced",
|
||||
"choices": [
|
||||
{
|
||||
"delta": {
|
||||
"content": "This is a test. If you have any specific questions or need information, feel",
|
||||
"role": "assistant",
|
||||
"function_call": null,
|
||||
"tool_calls": null
|
||||
},
|
||||
"finish_reason": null,
|
||||
"index": 0,
|
||||
"logprobs": null
|
||||
}
|
||||
],
|
||||
"created": 1740543996,
|
||||
"model": "model",
|
||||
"object": "chat.completion.chunk",
|
||||
"system_fingerprint": "",
|
||||
"usage": null
|
||||
}
|
||||
// omit duplicated information
|
||||
{"choices":[{"delta":{"content":" free to ask, and I will do my best to provide an answer based on","role":"assistant"}}]}
|
||||
{"choices":[{"delta":{"content":" the knowledge I have. If your question is unrelated to the provided knowledge base,","role":"assistant"}}]}
|
||||
{"choices":[{"delta":{"content":" I will let you know.","role":"assistant"}}]}
|
||||
// the last chunk
|
||||
{
|
||||
"id": "chatcmpl-3a9c3572f29311efa69751e139332ced",
|
||||
"choices": [
|
||||
{
|
||||
"delta": {
|
||||
"content": null,
|
||||
"role": "assistant",
|
||||
"function_call": null,
|
||||
"tool_calls": null
|
||||
},
|
||||
"finish_reason": "stop",
|
||||
"index": 0,
|
||||
"logprobs": null
|
||||
}
|
||||
],
|
||||
"created": 1740543996,
|
||||
"model": "model",
|
||||
"object": "chat.completion.chunk",
|
||||
"system_fingerprint": "",
|
||||
"usage": {
|
||||
"prompt_tokens": 18,
|
||||
"completion_tokens": 225,
|
||||
"total_tokens": 243
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Non-stream:
|
||||
|
||||
```json
|
||||
{
|
||||
"choices":[
|
||||
{
|
||||
"finish_reason":"stop",
|
||||
"index":0,
|
||||
"logprobs":null,
|
||||
"message":{
|
||||
"content":"This is a test. If you have any specific questions or need information, feel free to ask, and I will do my best to provide an answer based on the knowledge I have. If your question is unrelated to the provided knowledge base, I will let you know.",
|
||||
"role":"assistant"
|
||||
}
|
||||
}
|
||||
],
|
||||
"created":1740543499,
|
||||
"id":"chatcmpl-3a9c3572f29311efa69751e139332ced",
|
||||
"model":"model",
|
||||
"object":"chat.completion",
|
||||
"usage":{
|
||||
"completion_tokens":246,
|
||||
"completion_tokens_details":{
|
||||
"accepted_prediction_tokens":246,
|
||||
"reasoning_tokens":18,
|
||||
"rejected_prediction_tokens":0
|
||||
},
|
||||
"prompt_tokens":18,
|
||||
"total_tokens":264
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Failure:
|
||||
|
||||
```json
|
||||
{
|
||||
"code": 102,
|
||||
"message": "The last content of this conversation is not from user."
|
||||
}
|
||||
```
|
||||
|
||||
## DATASET MANAGEMENT
|
||||
|
||||
---
|
||||
|
||||
@ -13,10 +13,63 @@ Run the following command to download the Python SDK:
|
||||
```bash
|
||||
pip install ragflow-sdk
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
---
|
||||
|
||||
## OpenAI-Compatible API
|
||||
|
||||
---
|
||||
|
||||
### Create chat completion
|
||||
|
||||
Creates a model response for the given historical chat conversation via OpenAI's API.
|
||||
|
||||
#### Parameters
|
||||
|
||||
##### model: `str`, *Required*
|
||||
|
||||
The model used to generate the response. The server will parse this automatically, so you can set it to any value for now.
|
||||
|
||||
##### messages: `list[object]`, *Required*
|
||||
|
||||
A list of historical chat messages used to generate the response. This must contain at least one message with the `user` role.
|
||||
|
||||
##### stream: `boolean`
|
||||
|
||||
Whether to receive the response as a stream. Set this to `false` explicitly if you prefer to receive the entire response in one go instead of as a stream.
|
||||
|
||||
#### Returns
|
||||
|
||||
- Success: Respose [message](https://platform.openai.com/docs/api-reference/chat/create) like OpenAI
|
||||
- Failure: `Exception`
|
||||
|
||||
#### Examples
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
model = "model"
|
||||
client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model=model,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Who are you?"},
|
||||
],
|
||||
stream=True
|
||||
)
|
||||
|
||||
stream = True
|
||||
if stream:
|
||||
for chunk in completion:
|
||||
print(chunk)
|
||||
else:
|
||||
print(completion.choices[0].message.content)
|
||||
```
|
||||
|
||||
## DATASET MANAGEMENT
|
||||
|
||||
---
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user